- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试在 Tensorflow 中实现无导数学习算法。因此,一种不使用反向传播的学习算法,例如所讨论的 here .
据我了解,默认的优化器都实现了反向传播。我可以按照 here 所述操作梯度值:
# Create an optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1)
# Compute the gradients for a list of variables.
grads_and_vars = opt.compute_gradients(loss, <list of variables>)
# grads_and_vars is a list of tuples (gradient, variable). Do whatever you
# need to the 'gradient' part, for example cap them, etc.
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]
# Ask the optimizer to apply the capped gradients.
opt.apply_gradients(capped_grads_and_vars)
但我没有看到一种实现不依赖反向传播的学习算法的方法。此外,我想使用的 forumla 不需要导数,所以我认为根本没有必要计算梯度?</p>
是否有任何方法可以修改/创建优化器以使用反向传播以外的其他方式来调整权重?
最佳答案
虽然到目前为止我还没有实现自己的优化器,但我仔细检查了 TensorFlow 架构,因为我目前正在为它编写一个 Wrapper。
据我了解,您可以通过扩展 tf.train.Optimizer 来实现自己的优化器类(就像当前在 TensorFlow 中实现的所有其他优化器一样)。
通俗地说,TensorFlow 中的优化器由 Python(或任何其他客户端语言)和 C++ 部分组成。后者实现核心功能,即 TensorFlow Graph 中的 Ops,如定义的训练 Ops here .
优化器的 Python 部分将 Ops 添加到图形定义中。它提供传递给 Ops 的参数,并对优化器进行一些高级管理。
所以这是我建议您可以尝试的方法:
编写您自己的基本优化器类的实现。
要实现您的公式,您必须定义一个 Op,如 Adding an Op Documentation 中所述。 .
关于python - Tensorflow 中的无导数学习算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48423019/
我有一个随时间变化的数据流。如何使用 C# 确定变化率? 自从上微积分课已经很长时间了,但现在是我第一次真正需要它(15 年来)。现在,当我搜索“衍生品”这个词时,我会得到金融方面的东西,以及我认为并
假设我有以下数据和命令: clc;clear; t = [0:0.1:1]; t_new = [0:0.01:1]; y = [1,2,1,3,2,2,4,5,6,1,0]; p = interp1(
假设我有以下数据和命令: clc;clear; t = [0:0.1:1]; t_new = [0:0.01:1]; y = [1,2,1,3,2,2,4,5,6,1,0]; p = interp1(
我曾经使用这个公式来计算每秒记录的信号的导数,然后对其应用滚动平均值。 df.rolling(rollingWindow, center=True).mean().diff(rollingWindow
通过这里的一些帮助,我想出了一个函数,它似乎将索贝尔导数应用于 X 方向的图像 F(x,y) = F(x+1,y) - F( x,y)我无法使用任何 OpenCV 函数,并且我需要 2D 输出数组比
对于神经网络库,我实现了一些激活函数和损失函数及其衍生物。它们可以任意组合,输出层的导数只是损失导数和激活导数的乘积。 但是,我未能独立于任何损失函数实现 Softmax 激活函数的导数。由于归一化,
我要在使用 ReLU 的神经网络上进行反向传播。 在我之前的一个项目中,我在一个使用 Sigmoid 激活函数的网络上做了,但现在我有点困惑,因为 ReLU 没有导数。 这是一个 image关于 we
我的任务是制作自己的 Sobel 方法,而不是使用 OpenCV 中的 cv::Sobel。我尝试实现我在 Programming techniques 找到的一个 但是,当我运行该程序时,cv::M
我愿意计算一个不完全明确的函数的 Frechet/Gateaux 导数,我的问题是:最有效的方法是什么?您会推荐我使用哪种语言? 准确地说,我的问题是我有一个函数,比如 F,它是多维函数对(即从 R^
我想使用 Flux.jl 绘制函数及其梯度和 Plots.jl using Flux.Tracker using Plots f(x::Float64) = 3x^2 + 2x + 1 df(x::F
我已将 ReLu 导数实现为: def relu_derivative(x): return (x>0)*np.ones(x.shape) 我也尝试过: def relu_derivativ
我几乎没有关于 Scharr 导数及其 OpenCV 实现的问题。 我对具有 (3X3) 内核的二阶图像导数感兴趣。我从 Sobel 二阶导数开始,它未能在图像中找到一些细线。看完this page底
import numpy as np def relu(z): return np.maximum(0,z) def d_relu(z): z[z>0]=1 z[z 0).as
你好,我用 C++ 创建了一个小的运动模拟。我想向学生展示 Euler、Runge-Kutta 和 MidPoint 方法之间的差异,有些 Material 点在撞击球体时会移动和反弹。 但是当我切换
或者,目标:如何以声明方式从 Nix 不稳定中获取单个包? 我是 NixOS 的新手,目前正在尝试安装比默认版本更新的 Consul 0.5.2我的 NixOS 版本(最新稳定版)。我正在尝试通过覆盖
我已经为此苦苦挣扎了很长一段时间。我想要的只是一个 torch.diff() 函数。然而,许多矩阵运算似乎并不容易与张量运算兼容。 我已经尝试了大量不同的 pytorch 操作组合,但它们都不起作用。
我试图了解如何在 Swift 中创建 Vector,因为当我执行 CGVectorMake() 时,它告诉我将 dx 和 dy(导数)作为 CGFloat 传递。如何创建仅包含该信息的向量(线)? 谁
我希望你能帮助我。 我正在使用 QT 并尝试对图像的边缘进行简单检测。但是当我启动时我的程序崩溃了 cv::GaussianBlur( src, src, cv::Size(3,3), 0, 0, c
我正在计算信号的一阶和二阶导数,然后进行绘图。我选择了在 SciPy(信号模块)中实现的 Savitzky-Golay 滤波器。我想知道是否需要缩放输出 - 在同一过滤器的 Matlab 实现中,指定
我是一名优秀的程序员,十分优秀!