- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在阅读深度学习书籍中有关卷积如何与翻译等价的以下陈述。
Let g be a function mapping one image function to another image function, such that I'=g(I) is the image function with I'(x, y) =I(x−1, y). This shifts every pixel ofIone unit to the right. If we apply this transformation to I, then apply convolution, the result will be the same as if we applied convolution to I', then applied the transformation g to the output.
对于我加粗的最后一行,他们正在对 I' 应用卷积,但这不应该是 I 吗? I' 是翻译后的图像。否则它实际上会说:
f(g(I)) = g( f(g(I)) )
f 是卷积,g 是平移。我正在尝试使用 3D 内核在 python 中自己执行相同的操作,该内核等于图像的深度,就像彩色图像(房子)的卷积层中的情况一样。
这是我对图像应用平移然后卷积的代码。
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import scipy
import scipy.ndimage
I = scipy.ndimage.imread('pics/house.jpg')
def convolution(A, B):
return np.sum( np.multiply(A, B) )
k = np.array([[[0,1,-1],[1,-1,0],[0,0,0]], [[-1,0,-1],[1,-1,0],[1,0,0]], [[1,-1,0],[1,0,1],[-1,0,1]]]) #kernel
## Translation
translated = 100
new_I = np.zeros( (I.shape[0]-translated, I.shape[1], I.shape[2]) )
for i in range(translated, I.shape[0]):
for j in range(I.shape[1]):
for l in range(I.shape[2]):
new_I[i-translated,j,l] = I[i,j,l]
## Convolution
conv = np.zeros( (int((new_I.shape[0]-3)/2), int((new_I.shape[1]-3)/2) ) )
for i in range( conv.shape[0] ):
for j in range(conv.shape[1]):
conv[i, j] = convolution(new_I[2*i:2*i+3, 2*j:2*j+3, :], k)
scipy.misc.imsave('pics/convoled_image_2nd.png', conv)
我得到以下输出:
现在,我切换卷积和平移步骤:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import scipy
import scipy.ndimage
I = scipy.ndimage.imread('pics/house.jpg')
def convolution(A, B):
return np.sum( np.multiply(A, B) )
k = np.array([[[0,1,-1],[1,-1,0],[0,0,0]], [[-1,0,-1],[1,-1,0],[1,0,0]], [[1,-1,0],[1,0,1],[-1,0,1]]]) #kernel
## Convolution
conv = np.zeros( (int((I.shape[0]-3)/2), int((I.shape[1]-3)/2) ) )
for i in range( conv.shape[0] ):
for j in range(conv.shape[1]):
conv[i, j] = convolution(I[2*i:2*i+3, 2*j:2*j+3, :], k)
## Translation
translated = 100
new_I = np.zeros( (conv.shape[0]-translated, conv.shape[1]) )
for i in range(translated, conv.shape[0]):
for j in range(conv.shape[1]):
new_I[i-translated,j] = conv[i,j]
scipy.misc.imsave('pics/conv_trans_image.png', new_I)
现在我得到以下输出:
书上说的不应该是一样的吗?我究竟做错了什么?
最佳答案
正如书中所说,卷积和平移的线性特性保证了它们的顺序可以互换,边界效应除外。
例如:
import numpy as np
from scipy import misc, ndimage, signal
def translate(img, dx):
img_t = np.zeros_like(img)
if dx == 0: img_t[:, :] = img[:, :]
elif dx > 0: img_t[:, dx:] = img[:, :-dx]
else: img_t[:, :dx] = img[:, -dx:]
return img_t
def convolution(img, k):
return np.sum([signal.convolve2d(img[:, :, c], k[:, :, c])
for c in range(img.shape[2])], axis=0)
img = ndimage.imread('house.jpg')
k = np.array([
[[ 0, 1, -1], [1, -1, 0], [ 0, 0, 0]],
[[-1, 0, -1], [1, -1, 0], [ 1, 0, 0]],
[[ 1, -1, 0], [1, 0, 1], [-1, 0, 1]]])
ct = translate(convolution(img, k), 100)
tc = convolution(translate(img, 100), k)
misc.imsave('conv_then_trans.png', ct)
misc.imsave('trans_then_conv.png', tc)
if np.all(ct[2:-2, 2:-2] == tc[2:-2, 2:-2]):
print('Equal!')
打印:
Equal!
问题是您在第二个示例中过度翻译了。将图像缩小 2 倍后,尝试按 50
进行翻译。
关于python - 证明卷积在平移方面是等变的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48603371/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!