gpt4 book ai didi

python - Savitzky-Golay 过滤器的 Scipy 实现

转载 作者:太空宇宙 更新时间:2023-11-04 04:47:03 26 4
gpt4 key购买 nike

我正在查看 scipy cookbook implementation of the Savitzky-Golay algorithm :

#!python
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.
Parameters
----------
y : array_like, shape (N,)
the values of the time history of the signal.
window_size : int
the length of the window. Must be an odd integer number.
order : int
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
the smoothed signal (or it's n-th derivative).
Notes
-----
The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.
Examples
--------
t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label='Noisy signal')
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
plt.plot(t, ysg, 'r', label='Filtered signal')
plt.legend()
plt.show()
References
----------
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688
"""
import numpy as np
from math import factorial

try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')

这是让我感到困惑的部分:

firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))

我知道我们需要“填充”y,否则第一个 window_size/2 点将被排除,但我看不出减去的意义特定值与 y[0]y[0] 的绝对差值。

我认为绝对值不应该存在,否则,如果开始增加,趋势将被水平镜像,如果开始减少,则趋势将被镜像。

正如@ImportanceOfBeingErnest 所指出的,这可能是代码中的错字,从我链接到的页面左侧的图可以看出。

最佳答案

的确,这个逻辑是不对的,考虑到 y[0] 和 y[-1] 为 0 的情况可以最好地看出这一点。我认为其目的是实现奇数反射,因此一阶导数在反射点处是连续的。正确的形式是

firstvals = 2*y[0] - y[1:half_window+1][::-1]
lastvals = 2*y[-1] - y[-half_window-1:-1][::-1]

或者,将反转和切片结合在一个步骤中,

firstvals = 2*y[0] - y[half_window:0:-1]
lastvals = 2*y[-1] - y[-2:-half_window-2:-1]

我应该强调这只是用户贡献的一些代码。实际Scipy implementation of Savitzky-Golay filter是完全不同的。

关于python - Savitzky-Golay 过滤器的 Scipy 实现,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49322932/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com