- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在查看 scipy cookbook implementation of the Savitzky-Golay algorithm :
#!python
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.
Parameters
----------
y : array_like, shape (N,)
the values of the time history of the signal.
window_size : int
the length of the window. Must be an odd integer number.
order : int
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
the smoothed signal (or it's n-th derivative).
Notes
-----
The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.
Examples
--------
t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label='Noisy signal')
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
plt.plot(t, ysg, 'r', label='Filtered signal')
plt.legend()
plt.show()
References
----------
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688
"""
import numpy as np
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
这是让我感到困惑的部分:
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
我知道我们需要“填充”y
,否则第一个 window_size/2
点将被排除,但我看不出减去的意义特定值与 y[0]
与 y[0]
的绝对差值。
我认为绝对值不应该存在,否则,如果开始增加,趋势将被水平镜像,如果开始减少,则趋势将被镜像。
正如@ImportanceOfBeingErnest 所指出的,这可能是代码中的错字,从我链接到的页面左侧的图可以看出。
最佳答案
的确,这个逻辑是不对的,考虑到 y[0] 和 y[-1] 为 0 的情况可以最好地看出这一点。我认为其目的是实现奇数反射,因此一阶导数在反射点处是连续的。正确的形式是
firstvals = 2*y[0] - y[1:half_window+1][::-1]
lastvals = 2*y[-1] - y[-half_window-1:-1][::-1]
或者,将反转和切片结合在一个步骤中,
firstvals = 2*y[0] - y[half_window:0:-1]
lastvals = 2*y[-1] - y[-2:-half_window-2:-1]
我应该强调这只是用户贡献的一些代码。实际Scipy implementation of Savitzky-Golay filter是完全不同的。
关于python - Savitzky-Golay 过滤器的 Scipy 实现,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49322932/
Savitzky-Golay 平滑滤波器可用于计算系数,以便通过将系数应用于相邻值来计算平滑后的 y 值。平滑的曲线看起来很棒。 根据论文,系数也可用于计算高达 5 阶的导数。系数计算参数 ld 需要
我有一个 x 和 y 数据集,x 作为自变量,y 作为因变量。 y=2x 我向“y”添加一些噪音并应用 scipy Savitzky Golay 过滤器。当我试图得到 y 的一阶导数时,我得到的导数为
我的问题很简单:我想使用 Savitzgy Golay 过滤器平滑一些数据。我使用 C++。代码摘自书1可以分为两部分: 计算 Savitzgy Golay 系数并将它们存储在 vector C 中。
我正在查看 scipy cookbook implementation of the Savitzky-Golay algorithm : #!python def savitzky_golay(y,
我有以下时间序列数据集: import pandas as pd from datetime import datetime import numpy as np from scipy.signal
有没有办法将我的数据集的不确定性纳入 Savitzky Golay 拟合的结果 ?由于我没有将这些信息传递给函数,我假设它只是通过未加权最小二乘过程计算“最佳拟合”。我目前正在处理具有非均匀不确定性的
我正在计算信号的一阶和二阶导数,然后进行绘图。我选择了在 SciPy(信号模块)中实现的 Savitzky-Golay 滤波器。我想知道是否需要缩放输出 - 在同一过滤器的 Matlab 实现中,指定
我是一名优秀的程序员,十分优秀!