- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
在 SO 中已经有一个很好的问题了但最好的答案现在已经有 5 年了,所以我认为 2018 年应该会有更好的选择。
我目前正在寻找大于内存数据集的特征工程管道(使用合适的数据类型)。
首先,我将大的 csv 文件拆分为多个小的“parquet”文件。有了这个,dask 对于新特征的计算非常有效,但是我需要将它们合并到初始数据集和 atm,我们不能将新列添加到 parquet 文件。逐 block 读取 csv,合并并重新保存到多个 parquet 文件太耗时,因为特征工程在这个项目中是一个迭代过程。
然后我转向了 HDF,因为我们可以添加列并使用特殊查询,而且它仍然是二进制文件存储。我再次将大 csv 文件拆分为多个 HDF,使用相同的 key='base' 作为基本功能,以便使用 DASK 的并发写入(HDF 不允许)。
data = data.repartition(npartitions=10) # otherwise it was saving 8Mo files using to_hdf
data.to_hdf('./hdf/data-*.hdf', key='base', format='table', data_columns=['day'], get=dask.threaded.get)
(附件问题:指定 data_columns 似乎对 dask 没有用,因为 dask.read_hdf 中没有“where”?)
与我的预期不同,我无法使用如下代码将新功能合并到多个小文件中:
data = dd.read_hdf('./hdf/data-*.hdf', key='base')
data['day_pow2'] = data['day']**2
data['day_pow2'].to_hdf('./hdf/data-*.hdf', key='added', get=dask.threaded.get)
使用 dask.threaded,我在 2% 后得到“python 停止工作”。使用 dask.multiprocessing.get 它需要永远并创建新文件
最适合此工作流程的工具(存储和处理)是什么?
最佳答案
我只会复制一份来自 related issue 的评论在 fastparquet 上:在技术上可以向现有的 parquet 数据集添加列,但这在 fastparquet 中没有实现,并且可能也没有在任何其他 parquet 实现中实现。
编写代码来执行此操作可能不会太繁重(但目前未计划):调用 write columns顺序发生,因此用于写入的新列需要向下渗透到此函数,以及与页脚中元数据的当前第一个字节相对应的文件位置。此外,架构需要单独更新(这很简单)。需要对数据集的每个文件重复该过程。这不是问题的“答案”,但也许有人愿意承担这项任务。
关于使用 dask hdf/parquet 的 Python 大数据集特征工程工作流,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49554270/
如果我有一个依赖于某些全局或其他常量的函数,如下所示: x = 123 def f(partition): return partition + x # note that x is def
我们可以通过哪些方式在 Dask Arrays 中执行项目分配?即使是一个非常简单的项目分配,如:a[0] = 2 不起作用。 最佳答案 正确的。这是文档中提到的第一个限制。 通常,涉及 for 循环
[mapr@impetus-i0057 latest_code_deepak]$ dask-worker 172.26.32.37:8786 distributed.nanny - INFO -
我正在构建一个 FastAPI 应用程序,它将为 Dask 数组的 block 提供服务。我想利用 FastAPI's asynchronous functionality旁边Dask-distrib
在延迟数据帧处理的几个阶段之后,我需要在保存数据帧之前对其进行重新分区。但是,.repartition() 方法要求我知道分区的数量(而不是分区的大小),这取决于处理后数据的大小,这是未知的。 我想我
我正在努力转换 dask.bag将字典放入 dask.delayed pandas.DataFrames进入决赛 dask.dataframe 我有一个函数 (make_dict) 将文件读入一个相当
我正在尝试使用 dask_cudf/dask 读取单个大型 parquet 文件(大小 > gpu_size),但它目前正在读取它到一个分区中,我猜这是从文档字符串推断出的预期行为: dask.dat
当启动一个 dask 分布式本地集群时,您可以为 dashboard_address 设置一个随机端口或地址。 如果稍后获取scheduler对象。有没有办法提取仪表板的地址。 我有这个: clust
我有一个 dask 数据框,由 parquet 支持。它有 1.31 亿行,当我对整个帧执行一些基本操作时,它们需要几分钟。 df = dd.read_parquet('data_*.pqt') un
我正在使用 24 个 vCPU 的谷歌云计算实例。运行代码如下 import dask.dataframe as dd from distributed import Client client =
我正在尝试在多台机器上分发一个大型 Dask 数据帧,以便(稍后)在数据帧上进行分布式计算。我为此使用了 dask-distributed。 我看到的所有 dask 分布式示例/文档都是从网络资源(h
我在 Django 服务器后面使用 Dask,这里总结了我的基本设置:https://github.com/MoonVision/django-dask-demo/可以在这里找到 Dask 客户端:h
我有以下格式的 Dask DataFrame: date hour device param value 20190701 21 dev_01 att_1 0.00
我正在尝试使用 dask 而不是 Pandas,因为我有 2.6gb csv 文件。 我加载它,我想删除一列。但似乎无论是 drop 方法 df.drop('column') 或切片 df[ : ,
我有一个比我的内存大得多的文本文件。我想按字典顺序对该文件的行进行排序。我知道如何手动完成: 分成适合内存的块 对块进行排序 合并块 我想用 dask 来做。我认为处理大量数据将是 dask 的一个用
使用 Dask 的分布式调度程序时,我有一个正在远程工作人员上运行的任务,我想停止该任务。 我该如何阻止?我知道取消方法,但如果任务已经开始执行,这似乎不起作用。 最佳答案 如果它还没有运行 如果任务
我需要将一个非常大的 dask.bag 的元素提交到一个非线程安全的存储区,即我需要类似的东西 for x in dbag: store.add(x) 我无法使用compute,因为包太大,无
如果我有一个已经索引的 Dask 数据框 >>> A.divisions (None, None) >>> A.npartitions 1 我想设置分区,到目前为止我正在做 A.reset_index
根据 this回答,如果 Dask 知道数据帧的索引已排序,则 Dask 数据帧可以执行智能索引。 如果索引已排序,我如何让 Dask 知道? 在我的具体情况下,我正在做这样的事情: for sour
我想从具有特定数量的工作人员的 python 启动本地集群,然后将客户端连接到它。 cluster = LocalCluster(n_workers=8, ip='127.0.0.1') client
我是一名优秀的程序员,十分优秀!