gpt4 book ai didi

python - 错误 : draw_bounding_box() missing 2 required positional arguments: 'r' and 'd'

转载 作者:太空宇宙 更新时间:2023-11-04 04:40:25 25 4
gpt4 key购买 nike

我正在使用以下代码来检测人脸并在人脸上方绘制矩形,就像这样。

enter image description here

推理.py在这个文件中,我们试图在面部周围绘制 raw_bounding_box:

import cv2
import matplotlib.pyplot as plt
import numpy as np
from keras.preprocessing import image

def load_image(image_path, grayscale=False, target_size=None):
pil_image = image.load_face_coordinates(image_path, grayscale, target_size)
return image.face_coordinates_to_array(pil_image)

def load_detection_model(model_path):
detection_model = cv2.CascadeClassifier(model_path)
return detection_model

def detect_faces(detection_model, gray_image_array):
return detection_model.detectMultiScale(gray_image_array, 1.3, 5)

def draw_bounding_box(face_coordinates, image_array, color,r,d):
x1,y1,x2,y2 = face_coordinates
# cv2.rectangle(image_array, (x, y), (x + w, y + h), color, 2)
cv2.line(image_array, (x1 + r, y1), (x1 + r + d, y1), color, 2)
cv2.line(image_array, (x1, y1 + r), (x1, y1 + r + d), color, 2)
cv2.ellipse(image_array, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, 2)
# Top right
cv2.line(image_array, (x2 - r, y1), (x2 - r - d, y1), color, 2)
cv2.line(image_array, (x2, y1 + r), (x2, y1 + r + d), color, 2)
cv2.ellipse(image_array, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, 2)

# Bottom left
cv2.line(image_array, (x1 + r, y2), (x1 + r + d, y2), color, 2)
cv2.line(image_array, (x1, y2 - r), (x1, y2 - r - d), color, 2)
cv2.ellipse(image_array, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, 2)

# Bottom right
cv2.line(image_array, (x2 - r, y2), (x2 - r - d, y2), color, 2)
cv2.line(image_array, (x2, y2 - r), (x2, y2 - r - d), color, 2)
cv2.ellipse(image_array, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, 2)

image_array = np.zeros((256,256,3), dtype=np.uint8)

检测脸.py在这个文件中,我们正在检测面部并调用 Inference.py 中的函数来绘制面部周围的框。

# starting video streaming
cv2.namedWindow('window_frame')
video_capture = cv2.VideoCapture(0)
while True:
bgr_image = video_capture.read()[1]
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
faces = detect_faces(face_detection, gray_image)

for face_coordinates in faces:

x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
gray_face = gray_image[y1:y2, x1:x2]
try:
gray_face = cv2.resize(gray_face, (emotion_target_size))
except:
continue
gray_face = preprocess_input(gray_face, True)
gray_face = np.expand_dims(gray_face, 0)
gray_face = np.expand_dims(gray_face, -1)
emotion_prediction = emotion_classifier.predict(gray_face)
emotion_probability = np.max(emotion_prediction)
emotion_label_arg = np.argmax(emotion_prediction)
emotion_text = emotion_labels[emotion_label_arg]
emotion_window.append(emotion_text)

if len(emotion_window) > frame_window:
emotion_window.pop(0)
try:
emotion_mode = mode(emotion_window)
except:
continue

if emotion_text == 'angry':

color = emotion_probability * np.asarray((255, 0, 0))
elif emotion_text == 'sad':
color = emotion_probability * np.asarray((0, 0, 255))

elif emotion_text == 'happy':
color = emotion_probability * np.asarray((0, 128, 255))
elif emotion_text == 'surprise':
color = emotion_probability * np.asarray((0, 255, 255))
else:
color = emotion_probability * np.asarray((0, 255, 0))

color = color.astype(int)
color = color.tolist()

draw_bounding_box(face_coordinates, rgb_image, color)

此文件 (detectface.py) 中的最后一行代码似乎不正确,所以我不知道如何添加两个缺少的必需位置参数:'r' 和'd' 在这个文件中。如果您有任何实现此目标的想法,请分享

最佳答案

draw_bounding_box() 所做的是在示例图像中绘制类似绿色框的内容,包括对圆角的支持。

恕我直言,这是一个图片值一千字的案例,所以让我们看一下左上角(其他 3 个部分遵循相同的模式,只是旋转了)。

Diagram showing meaning of <code>r</code> and <code>d</code>

生成
cv2.line(image_array, (x1 + r, y1), (x1 + r + d, y1), color, 2)
cv2.line(image_array, (x1, y1 + r), (x1, y1 + r + d), color, 2)
cv2.ellipse(image_array, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, 2)

在哪里

  • (x1, y1) 指定我们要围绕其绘制框架的矩形区域的左上角。
  • r是圆弧(圆角)的半径
  • d 是 2 行(水平和垂直)的长度
  • color 是绘制直线和圆弧的颜色
  • 2是直线和圆弧的粗细

关于如何设置参数...

r 参数似乎更像是一种审美选择——我想说大约 8 可能看起来不错,尽管示例图像似乎没有圆角,这意味着 r == 0。我不确定(意思是我现在懒得尝试 ;))cv2.ellipse 绘制一个半径为 0 的椭圆有多高兴,但是一个简单的 if语句可以解决该问题(即仅在 r > 0 时调用 cv2.ellipse)。

d 参数似乎应该设置为使差距大约为 ROI 的 33%。我会选择 ROI 的较小维度(即 min(width, height)),将其除以 3,减去 r 并使用结果。

关于python - 错误 : draw_bounding_box() missing 2 required positional arguments: 'r' and 'd' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50765763/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com