gpt4 book ai didi

python - 在我的模型中使用 Pytorch SSIM 损失函数

转载 作者:太空宇宙 更新时间:2023-11-04 04:23:33 30 4
gpt4 key购买 nike

我正在通过 this repo 试用这个 SSIM 损失工具用于图像恢复。

引用原作者GitHub上的示例代码,我试过:

model.train()
for epo in range(epoch):
for i, data in enumerate(trainloader, 0):
inputs = data
inputs = Variable(inputs)
optimizer.zero_grad()
inputs = inputs.view(bs, 1, 128, 128)
top = model.upward(inputs)
outputs = model.downward(top, shortcut = True)
outputs = outputs.view(bs, 1, 128, 128)

if i % 20 == 0:
out = outputs[0].view(128, 128).detach().numpy() * 255
cv2.imwrite("/home/tk/Documents/recover/SSIM/" + str(epo) + "_" + str(i) + "_re.png", out)

loss = - criterion(inputs, outputs)
ssim_value = - loss.data.item()
print (ssim_value)
loss.backward()
optimizer.step()

然而,结果并没有像我预期的那样出来。在前 10 个 epoch 之后,打印的结果图像全是黑色。

loss = - criterion(inputs, outputs) 是作者提出的,然而,对于经典的 Pytorch 训练代码,这将是 loss = criterion(y_pred, target) ,因此这里应该是 loss = criterion(inputs, outputs)

但是,我尝试了 loss = criterion(inputs, outputs) 但结果还是一样。

谁能分享一些关于如何正确利用 SSIM 损失的想法?谢谢。

最佳答案

作者试图最大化 SSIM 值。pytorch损失函数和优化器工作的自然理解是减少损失。但 SSIM 值是质量衡量标准,因此越高越好。因此作者使用
loss = - criterion(inputs, outputs)

您可以改为尝试使用
loss = 1 - criterion(inputs, outputs)
如本 paper 中所述.


使用 this repo 测试上述内容的修改代码 (max_ssim.py)

import pytorch_ssim
import torch
from torch.autograd import Variable
from torch import optim
import cv2
import numpy as np

npImg1 = cv2.imread("einstein.png")

img1 = torch.from_numpy(np.rollaxis(npImg1, 2)).float().unsqueeze(0)/255.0
img2 = torch.rand(img1.size())

if torch.cuda.is_available():
img1 = img1.cuda()
img2 = img2.cuda()


img1 = Variable( img1, requires_grad=False)
img2 = Variable( img2, requires_grad = True)

print(img1.shape)
print(img2.shape)
# Functional: pytorch_ssim.ssim(img1, img2, window_size = 11, size_average = True)
ssim_value = 1-pytorch_ssim.ssim(img1, img2).item()
print("Initial ssim:", ssim_value)

# Module: pytorch_ssim.SSIM(window_size = 11, size_average = True)
ssim_loss = pytorch_ssim.SSIM()

optimizer = optim.Adam([img2], lr=0.01)

while ssim_value > 0.05:
optimizer.zero_grad()
ssim_out = 1-ssim_loss(img1, img2)
ssim_value = ssim_out.item()
print(ssim_value)
ssim_out.backward()
optimizer.step()
cv2.imshow('op',np.transpose(img2.cpu().detach().numpy()[0],(1,2,0)))
cv2.waitKey()

关于python - 在我的模型中使用 Pytorch SSIM 损失函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53956932/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com