- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在 python 中制作了一个用于图像分类的 tensorflow 模型。我正在使用 Windows 10。
我有一个 Train.py
我在 build_graph()
中定义图形的类并在 train()
中训练模型.这是 main.py
脚本:
#import fire
import numpy as np
import data_import as di
import os
import tensorflow as tf
class Train:
__x_ = []
__y_ = []
__logits = []
__loss = []
__train_step = []
__merged_summary_op = []
__saver = []
__session = []
__writer = []
__is_training = []
__loss_val = []
__train_summary = []
__val_summary = []
def __init__(self):
pass
def build_graph(self):
self.__x_ = tf.placeholder("float", shape=[None, 60, 60, 3], name='X')
self.__y_ = tf.placeholder("int32", shape=[None, 3], name='Y')
self.__is_training = tf.placeholder(tf.bool)
with tf.name_scope("model") as scope:
conv1 = tf.layers.conv2d(inputs=self.__x_, filters=64,
kernel_size=[5, 5],
padding="same", activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
conv3 = tf.layers.conv2d(inputs=pool2, filters=32, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
pool3_flat = tf.reshape(pool3, [-1, 7 * 7 * 32])
# FC layers
FC1 = tf.layers.dense(inputs=pool3_flat, units=128, activation=tf.nn.relu)
FC2 = tf.layers.dense(inputs=FC1, units=64, activation=tf.nn.relu)
self.__logits = tf.layers.dense(inputs=FC2, units=3)
# TensorFlow summary data to display in TensorBoard later
with tf.name_scope("loss_func") as scope:
self.__loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=self.__logits, labels=self.__y_))
self.__loss_val = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=self.__logits, labels=self.__y_))
# Add loss to tensorboard
self.__train_summary = tf.summary.scalar("loss_train", self.__loss)
self.__val_summary = tf.summary.scalar("loss_val", self.__loss_val)
# summary data to be displayed on TensorBoard during training:
with tf.name_scope("optimizer") as scope:
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = 1e-3
# decay every 10000 steps with a base of 0.96 function
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 1000, 0.9,
staircase=True)
self.__train_step = tf.train.AdamOptimizer(learning_rate).minimize(self.__loss, global_step=global_step)
tf.summary.scalar("learning_rate", learning_rate)
tf.summary.scalar("global_step", global_step)
# Merge op for tensorboard
self.__merged_summary_op = tf.summary.merge_all()
# Build graph
init = tf.global_variables_initializer()
# Saver for checkpoints
self.__saver = tf.train.Saver(max_to_keep=None)
# Configure summary to output at given directory
self.__session = tf.Session()
self.__writer = tf.summary.FileWriter("./logs/flight_path", self.__session.graph)
self.__session.run(init)
def train(self, save_dir='./model_files', batch_size=20):
#Load dataset and labels
x = np.asarray(di.load_images())
y = np.asarray(di.load_labels())
#Shuffle dataset
np.random.seed(0)
shuffled_indeces = np.arange(len(y))
np.random.shuffle(shuffled_indeces)
shuffled_x = x[shuffled_indeces].tolist()
shuffled_y = y[shuffled_indeces].tolist()
shuffled_y = tf.keras.utils.to_categorical(shuffled_y, 3)
dataset = (shuffled_x, shuffled_y)
dataset = tf.data.Dataset.from_tensor_slices(dataset)
#dataset = dataset.shuffle(buffer_size=300)
# Using Tensorflow data Api to handle batches
dataset_train = dataset.take(200)
dataset_train = dataset_train.repeat()
dataset_train = dataset_train.batch(batch_size)
dataset_test = dataset.skip(200)
dataset_test = dataset_test.repeat()
dataset_test = dataset_test.batch(batch_size)
# Create an iterator
iter_train = dataset_train.make_one_shot_iterator()
iter_train_op = iter_train.get_next()
iter_test = dataset_test.make_one_shot_iterator()
iter_test_op = iter_test.get_next()
# Build model graph
self.build_graph()
# Train Loop
for i in range(10):
batch_train = self.__session.run([iter_train_op])
batch_x_train, batch_y_train = batch_train[0]
# Print loss from time to time
if i % 100 == 0:
batch_test = self.__session.run([iter_test_op])
batch_x_test, batch_y_test = batch_test[0]
loss_train, summary_1 = self.__session.run([self.__loss,
self.__merged_summary_op],
feed_dict={self.__x_:
batch_x_train,
self.__y_:
batch_y_train,
self.__is_training: True})
loss_val, summary_2 = self.__session.run([self.__loss_val,
self.__val_summary],
feed_dict={self.__x_: batch_x_test,
self.__y_: batch_y_test,
self.__is_training: False})
print("Loss Train: {0} Loss Val: {1}".format(loss_train,
loss_val))
# Write to tensorboard summary
self.__writer.add_summary(summary_1, i)
self.__writer.add_summary(summary_2, i)
# Execute train op
self.__train_step.run(session=self.__session, feed_dict={
self.__x_: batch_x_train, self.__y_: batch_y_train,
self.__is_training: True})
print(i)
# Once the training loop is over, we store the final model into a checkpoint file with op
# __saver.save:
# converter = tf.contrib.lite.TFLiteConverter.from_session(self.__session, [self.__x_], [self.__y_])
# tflite_model = converter.convert()
# open("MobileNet/ConvertedModelFile.tflite", "wb").write(tflite_model)
# Save model
if not os.path.exists(save_dir):
os.makedirs(save_dir)
checkpoint_path = os.path.join(save_dir, "model.ckpt")
filename = self.__saver.save(self.__session, checkpoint_path)
tf.train.write_graph(self.__session.graph_def, save_dir, "save_graph.pbtxt")
print("Model saved in file: %s" % filename)
if __name__ == '__main__':
cnn = Train()
cnn.train()
我尝试通过导出 GraphDef from tf.Session
将 GraphDef 导出到 .tflite 文件, Exporting a GraphDef from file
和 Exporting a SavedModel
.都在这里描述Converter Python API guide .
来自 tf.Session 的 GraphDef
当我尝试使用 GraphDef from tf.Session
导出时指导,我收到以下错误:
Traceback (most recent call last):
File "C:/Users/nermi/PycharmProjects/DronePathTracking/main.py", line 226, in <module>
cnn.train()
File "C:/Users/nermi/PycharmProjects/DronePathTracking/main.py", line 212, in train
tflite_model = converter.convert()
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\lite.py", line 453, in convert
**converter_kwargs)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\convert.py", line 342, in toco_convert_impl
input_data.SerializeToString())
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\convert.py", line 135, in toco_convert_protos
(stdout, stderr))
RuntimeError: TOCO failed see console for info.
b'Traceback (most recent call last):\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\tensorflow_wrap_toco.py", line 18, in swig_import_helper\r\n fp, pathname, description = imp.find_module(\'_tensorflow_wrap_toco\', [dirname(__file__)])\r\n File "c:\\users\\nermi\\python\\python36\\lib\\imp.py", line 297, in find_module\r\n raise ImportError(_ERR_MSG.format(name), name=name)\r\nImportError: No module named \'_tensorflow_wrap_toco\'\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File "c:\\users\\nermi\\python\\python36\\lib\\runpy.py", line 193, in _run_module_as_main\r\n "__main__", mod_spec)\r\n File "c:\\users\\nermi\\python\\python36\\lib\\runpy.py", line 85, in _run_code\r\n exec(code, run_globals)\r\n File "C:\\Users\\nermi\\Python\\Python36\\Scripts\\toco_from_protos.exe\\__main__.py", line 5, in <module>\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\toco_from_protos.py", line 22, in <module>\r\n from tensorflow.contrib.lite.toco.python import tensorflow_wrap_toco\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\tensorflow_wrap_toco.py", line 28, in <module>\r\n _tensorflow_wrap_toco = swig_import_helper()\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\tensorflow_wrap_toco.py", line 20, in swig_import_helper\r\n import _tensorflow_wrap_toco\r\nModuleNotFoundError: No module named \'_tensorflow_wrap_toco\'\r\n'
None
导出保存的模型
当我尝试使用 Exporting a SavedModel
导出时指导我export_saved_model.py
脚本我收到以下错误:
Traceback (most recent call last):
File "C:/Users/nermi/PycharmProjects/DronePathTracking/export_saved_model.py", line 5, in <module>
converter = tf.contrib.lite.TFLiteConverter.from_saved_model(saved_model_dir)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\lite.py", line 340, in from_saved_model
output_arrays, tag_set, signature_key)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\convert_saved_model.py", line 239, in freeze_saved_model
meta_graph = get_meta_graph_def(saved_model_dir, tag_set)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\convert_saved_model.py", line 61, in get_meta_graph_def
return loader.load(sess, tag_set, saved_model_dir)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 196, in load
loader = SavedModelLoader(export_dir)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 212, in __init__
self._saved_model = _parse_saved_model(export_dir)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 82, in _parse_saved_model
constants.SAVED_MODEL_FILENAME_PB))
OSError: SavedModel file does not exist at: model_files/{saved_model.pbtxt|saved_model.pb}
export_saved_model.py
:
import tensorflow as tf
saved_model_dir = "model_files"
converter = tf.contrib.lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()
open("MobileNet/converted_model.tflite", "wb").write(tflite_model)
从文件导出 GraphDef
最后,我有以下 freeze_model.py
卡住已保存模型的脚本:
from tensorflow.python.tools import freeze_graph
# Freeze the graph
save_path="C:/Users/nermi/PycharmProjects/DronePathTracking/model_files/" #directory to model files
MODEL_NAME = 'my_model' #name of the model optional
input_graph_path = save_path+'save_graph.pbtxt'#complete path to the input graph
checkpoint_path = save_path+'model.ckpt' #complete path to the model's checkpoint file
input_saver_def_path = ""
input_binary = False
output_node_names = "X, Y" #output node's name. Should match to that mentioned in your code
restore_op_name = "save/restore_all"
filename_tensor_name = "save/Const:0"
output_frozen_graph_name = save_path+'frozen_'+MODEL_NAME+'.pb' # the name of .pb file you would like to give
clear_devices = True
def freeze():
freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
input_binary, checkpoint_path, output_node_names,
restore_op_name, filename_tensor_name,
output_frozen_graph_name, clear_devices, "")
freeze()
但是当我尝试转换我的 frozen_my_model.pb
与我的 export_to_tflite.py
一起玩 tflite脚本:
import tensorflow as tf
grap_def_file = "model_files/frozen_my_model.pb" # the .pb file
input_arrays = ["X"] #Input node
output_arrays = ["Y"] #Output node
converter = tf.contrib.lite.TFLiteConverter.from_frozen_graph(
grap_def_file, input_arrays, output_arrays
)
tflite_model = converter.convert()
open("MobileNet/my_model.tflite", "wb").write(tflite_model)
我收到以下错误:
Traceback (most recent call last):
File "C:/Users/nermi/PycharmProjects/DronePathTracking/export_to_tflite.py", line 12, in <module>
tflite_model = converter.convert()
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\lite.py", line 453, in convert
**converter_kwargs)
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\convert.py", line 342, in toco_convert_impl
input_data.SerializeToString())
File "C:\Users\nermi\Python\Python36\lib\site-packages\tensorflow\contrib\lite\python\convert.py", line 135, in toco_convert_protos
(stdout, stderr))
RuntimeError: TOCO failed see console for info.
b'Traceback (most recent call last):\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\tensorflow_wrap_toco.py", line 18, in swig_import_helper\r\n fp, pathname, description = imp.find_module(\'_tensorflow_wrap_toco\', [dirname(__file__)])\r\n File "c:\\users\\nermi\\python\\python36\\lib\\imp.py", line 297, in find_module\r\n raise ImportError(_ERR_MSG.format(name), name=name)\r\nImportError: No module named \'_tensorflow_wrap_toco\'\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File "c:\\users\\nermi\\python\\python36\\lib\\runpy.py", line 193, in _run_module_as_main\r\n "__main__", mod_spec)\r\n File "c:\\users\\nermi\\python\\python36\\lib\\runpy.py", line 85, in _run_code\r\n exec(code, run_globals)\r\n File "C:\\Users\\nermi\\Python\\Python36\\Scripts\\toco_from_protos.exe\\__main__.py", line 5, in <module>\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\toco_from_protos.py", line 22, in <module>\r\n from tensorflow.contrib.lite.toco.python import tensorflow_wrap_toco\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\tensorflow_wrap_toco.py", line 28, in <module>\r\n _tensorflow_wrap_toco = swig_import_helper()\r\n File "c:\\users\\nermi\\python\\python36\\lib\\site-packages\\tensorflow\\contrib\\lite\\toco\\python\\tensorflow_wrap_toco.py", line 20, in swig_import_helper\r\n import _tensorflow_wrap_toco\r\nModuleNotFoundError: No module named \'_tensorflow_wrap_toco\'\r\n'
None
额外信息
当我将模型保存在 model_files 目录中时,它看起来像这样:
我尝试了很多东西,但没有运气。
感谢任何帮助!
最佳答案
Windows 上的 TOCO 有问题。在找到解决方案之前,我一直遇到这样的问题。 解决方案是将所有保存的模型或 graphdef 上传到 Google Colab notebook。然后,
所以,TOCO 没有问题。看这个notebook获取信息。
关于python - 将 Tensorflow 模型转换为 tensorflow-lite (.tflite) 格式时出现问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54574027/
可不可以命名为MVVM模型?因为View通过查看模型数据。 View 是否应该只与 ViewModelData 交互?我确实在某处读到正确的 MVVM 模型应该在 ViewModel 而不是 Mode
我正在阅读有关设计模式的文章,虽然作者们都认为观察者模式很酷,但在设计方面,每个人都在谈论 MVC。 我有点困惑,MVC 图不是循环的,代码流具有闭合拓扑不是很自然吗?为什么没有人谈论这种模式: mo
我正在开发一个 Sticky Notes 项目并在 WPF 中做 UI,显然将 MVVM 作为我的架构设计选择。我正在重新考虑我的模型、 View 和 View 模型应该是什么。 我有一个名为 Not
不要混淆:How can I convert List to Hashtable in C#? 我有一个模型列表,我想将它们组织成一个哈希表,以枚举作为键,模型列表(具有枚举的值)作为值。 publi
我只是花了一些时间阅读这些术语(我不经常使用它们,因为我们没有任何 MVC 应用程序,我通常只说“模型”),但我觉得根据上下文,这些意味着不同的东西: 实体 这很简单,它是数据库中的一行: 2) In
我想知道你们中是否有人知道一些很好的教程来解释大型应用程序的 MVVM。我发现关于 MVVM 的每个教程都只是基础知识解释(如何实现模型、 View 模型和 View ),但我对在应用程序页面之间传递
我想realm.delete() 我的 Realm 中除了一个模型之外的所有模型。有什么办法可以不列出所有这些吗? 也许是一种遍历 Realm 中当前存在的所有类型的方法? 最佳答案 您可以从您的 R
我正在尝试使用 alias 指令模拟一个 Eloquent 模型,如下所示: $transporter = \Mockery::mock('alias:' . Transporter::class)
我正在使用 stargazer 创建我的 plm 汇总表。 library(plm) library(pglm) data("Unions", package = "pglm") anb1 <- pl
我读了几篇与 ASP.NET 分层架构相关的文章和问题,但是读得太多后我有点困惑。 UI 层是在 ASP.NET MVC 中开发的,对于数据访问,我在项目中使用 EF。 我想通过一个例子来描述我的问题
我收到此消息错误: Inceptionv3.mlmodel: unable to read document 我下载了最新版本的 xcode。 9.4 版测试版 (9Q1004a) 最佳答案 您没有
(同样,一个 MVC 验证问题。我知道,我知道......) 我想使用 AutoMapper ( http://automapper.codeplex.com/ ) 来验证我的创建 View 中不在我
需要澄清一件事,现在我正在处理一个流程,其中我有两个 View 模型,一个依赖于另一个 View 模型,为了处理这件事,我尝试在我的基本 Activity 中注入(inject)两个 View 模型,
如果 WPF MVVM 应该没有代码,为什么在使用 ICommand 时,是否需要在 Window.xaml.cs 代码中实例化 DataContext 属性?我已经并排观看并关注了 YouTube
当我第一次听说 ASP.NET MVC 时,我认为这意味着应用程序由三个部分组成:模型、 View 和 Controller 。 然后我读到 NerdDinner并学习了存储库和 View 模型的方法
Platform : ubuntu 16.04 Python version: 3.5.2 mmdnn version : 0.2.5 Source framework with version :
我正在学习本教程:https://www.raywenderlich.com/160728/object-oriented-programming-swift ...并尝试对代码进行一些个人调整,看看
我正试图围绕 AngularJS。我很喜欢它,但一个核心概念似乎在逃避我——模型在哪里? 例如,如果我有一个显示多个交易列表的应用程序。一个列表向服务器查询匹配某些条件的分页事务集,另一个列表使用不同
我在为某个应用程序找出最佳方法时遇到了麻烦。我不太习惯取代旧 TLA(三层架构)的新架构,所以这就是我的来源。 在为我的应用程序(POCO 类,对吧??)设计模型和 DAL 时,我有以下疑问: 我的模
我有两个模型:Person 和 Department。每个人可以在一个部门工作。部门可以由多人管理。我不确定如何在 Django 模型中构建这种关系。 这是我不成功的尝试之一 [models.py]:
我是一名优秀的程序员,十分优秀!