gpt4 book ai didi

python - lmfit 最小化(或 scipy.optimize leastsq)复杂方程/数据

转载 作者:太空宇宙 更新时间:2023-11-04 04:19:50 26 4
gpt4 key购买 nike

编辑:
用这种方法建模和拟合效果很好,这里的数据不好。
--------------------

我想对复杂的数据集进行曲线拟合。在彻底阅读和搜索之后,我发现我可以使用几种方法(例如 lmfit 优化、scipy leastsq)。

但没有一个适合我。

这是拟合方程:

enter image description here

这里是要拟合的数据(y值列表):

[(0.00011342104914066835+8.448890220616275e-07j),
(0.00011340386404065371+7.379293582429708e-07j),
(0.0001133540327309949+6.389834505824625e-07j),
(0.00011332170913939336+5.244566142401774e-07j),
(0.00011331311156154074+4.3841061618015007e-07j),
(0.00011329383047059048+3.6163513508002877e-07j),
(0.00011328700094846502+3.0542249453666894e-07j),
(0.00011327650033983806+2.548725558622188e-07j),
(0.00011327702539337786+2.2508174567697671e-07j),
(0.00011327342238146558+1.9607648998100523e-07j),
(0.0001132710747364799+1.721721661949941e-07j),
(0.00011326933241850936+1.5246061350710235e-07j),
(0.00011326798040984542+1.3614817802178457e-07j),
(0.00011326752037650585+1.233483784504962e-07j),
(0.00011326758290166552+1.1258801448459512e-07j),
(0.00011326813100914905+1.0284749122099354e-07j),
(0.0001132684076390416+9.45791423595816e-08j),
(0.00011326982474882009+8.733105218572698e-08j),
(0.00011327158639135678+8.212191452217794e-08j),
(0.00011327366823516856+7.747920115589205e-08j),
(0.00011327694366034208+7.227069986108343e-08j),
(0.00011327915327873038+6.819405851172907e-08j),
(0.00011328181165961218+6.468392148750885e-08j),
(0.00011328531688122571+6.151393311227958e-08j),
(0.00011328857849500441+5.811704586613896e-08j),
(0.00011329241716561626+5.596645863242474e-08j),
(0.0001132970129528527+5.4722461511610696e-08j),
(0.0001133002881788021+5.064523218904898e-08j),
(0.00011330507671740223+5.0307457368330284e-08j),
(0.00011331106068787993+4.7703959367963307e-08j),
(0.00011331577350707601+4.634615394867111e-08j),
(0.00011332064001939156+4.6914747648361504e-08j),
(0.00011333034985824086+4.4992151257444304e-08j),
(0.00011334188526870483+4.363662798446445e-08j),
(0.00011335491299924776+4.364164366097129e-08j),
(0.00011337451201475147+4.262881852644385e-08j),
(0.00011339778209066752+4.275096587356569e-08j),
(0.00011342832992628646+4.4463907608604945e-08j),
(0.00011346526768580432+4.35706649329342e-08j),
(0.00011351108008292451+4.4155812379491554e-08j),
(0.00011356967192325835+4.327004709646922e-08j),
(0.00011364164970635006+4.420660396556604e-08j),
(0.00011373150199883139+4.3672898914161596e-08j),
(0.00011384660942003356+4.326171366194325e-08j),
(0.00011399193321804955+4.1493065523925126e-08j),
(0.00011418043916260295+4.0762418512759096e-08j),
(0.00011443271767970721+3.91359909722939e-08j),
(0.00011479600563688605+3.845666332695652e-08j),
(0.0001153652105925112+3.6224677316584614e-08j),
(0.00011638635682516399+3.386843079212692e-08j),
(0.00011836223959714231+3.6692295450490655e-08j)]


这是 x 值的列表:

[999.9999960000001,
794.328231,
630.957342,
501.18723099999994,
398.107168,
316.22776400000004,
251.188642,
199.52623,
158.489318,
125.89254,
99.999999,
79.432823,
63.095734,
50.118722999999996,
39.810717,
31.622776,
25.118864000000002,
19.952623000000003,
15.848932000000001,
12.589253999999999,
10.0,
7.943282000000001,
6.309573,
5.011872,
3.981072,
3.1622779999999997,
2.511886,
1.9952619999999999,
1.584893,
1.258925,
1.0,
0.7943279999999999,
0.630957,
0.5011869999999999,
0.398107,
0.316228,
0.251189,
0.199526,
0.15848900000000002,
0.125893,
0.1,
0.079433,
0.063096,
0.050119,
0.039811,
0.031623000000000005,
0.025119,
0.019953,
0.015849000000000002,
0.012589,
0.01]


这是有效但不是我想要的方式的代码:

import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters

#%% the equation
def ColeCole(params, fr): #fr is x values array and params are the fitting parameters
sig0 = params['sig0']
m = params['m']
tau = params['tau']
c = params['c']
w = fr*2*np.pi
num = 1
denom = 1+(1j*w*tau)**c
sigComplex = sig0*(1.0+(m/(1-m))*(1-num/denom))
return sigComplex

def res(params, fr, data): #calculating reseduals of fit
resedual = ColeCole(params, fr) - data
return resedual.view(np.float)

#%% Adding model parameters and fitting
params = Parameters()
params.add('sig0', value=0.00166)
params.add('m', value=0.19,)
params.add('tau', value=0.05386)
params.add('c', value=0.80)

params['tau'].min = 0 # these conditions must be met but even if I remove them the fit is ugly!!
params['m'].min = 0

out= minimize(res, params , args= (np.array(fr2), np.array(data)))

#%%plotting Imaginary part

fig, ax = plt.subplots()

plotX = fr2
plotY = data.imag
fitplot = ColeCole(out.params, fr2)
ax.semilogx(plotX,plotY,'o',label='imc')
ax.semilogx(plotX,fitplot.imag,label='fit')
#%%plotting real part
fig2, ax2 = plt.subplots()

plotX2 = fr2
plotY2 = data.real
fitplot2 = ColeCole(out.params, fr2)
ax2.semilogx(plotX2,plotY2,'o',label='imc')
ax2.semilogx(plotX2,fitplot2.real,label='fit')


我可能做错了,如果你知道对复杂数据进行曲线拟合的正确解决方案,请帮助我。

最佳答案

我建议首先将复杂数据转换为 numpy 数组并分别获得真实的图像对,然后使用 lmfit 模型对同类数据建模。也许是这样的:

cdata = np.array((0.00011342104914066835+8.448890220616275e-07j,
0.00011340386404065371+7.379293582429708e-07j,
0.0001133540327309949+6.389834505824625e-07j,
0.00011332170913939336+5.244566142401774e-07j,
0.00011331311156154074+4.3841061618015007e-07j,
0.00011329383047059048+3.6163513508002877e-07j,
0.00011328700094846502+3.0542249453666894e-07j,
0.00011327650033983806+2.548725558622188e-07j,
0.00011327702539337786+2.2508174567697671e-07j,
0.00011327342238146558+1.9607648998100523e-07j,
0.0001132710747364799+1.721721661949941e-07j,
0.00011326933241850936+1.5246061350710235e-07j,
0.00011326798040984542+1.3614817802178457e-07j,
0.00011326752037650585+1.233483784504962e-07j,
0.00011326758290166552+1.1258801448459512e-07j,
0.00011326813100914905+1.0284749122099354e-07j,
0.0001132684076390416+9.45791423595816e-08j,
0.00011326982474882009+8.733105218572698e-08j,
0.00011327158639135678+8.212191452217794e-08j,
0.00011327366823516856+7.747920115589205e-08j,
0.00011327694366034208+7.227069986108343e-08j,
0.00011327915327873038+6.819405851172907e-08j,
0.00011328181165961218+6.468392148750885e-08j,
0.00011328531688122571+6.151393311227958e-08j,
0.00011328857849500441+5.811704586613896e-08j,
0.00011329241716561626+5.596645863242474e-08j,
0.0001132970129528527+5.4722461511610696e-08j,
0.0001133002881788021+5.064523218904898e-08j,
0.00011330507671740223+5.0307457368330284e-08j,
0.00011331106068787993+4.7703959367963307e-08j,
0.00011331577350707601+4.634615394867111e-08j,
0.00011332064001939156+4.6914747648361504e-08j,
0.00011333034985824086+4.4992151257444304e-08j,
0.00011334188526870483+4.363662798446445e-08j,
0.00011335491299924776+4.364164366097129e-08j,
0.00011337451201475147+4.262881852644385e-08j,
0.00011339778209066752+4.275096587356569e-08j,
0.00011342832992628646+4.4463907608604945e-08j,
0.00011346526768580432+4.35706649329342e-08j,
0.00011351108008292451+4.4155812379491554e-08j,
0.00011356967192325835+4.327004709646922e-08j,
0.00011364164970635006+4.420660396556604e-08j,
0.00011373150199883139+4.3672898914161596e-08j,
0.00011384660942003356+4.326171366194325e-08j,
0.00011399193321804955+4.1493065523925126e-08j,
0.00011418043916260295+4.0762418512759096e-08j,
0.00011443271767970721+3.91359909722939e-08j,
0.00011479600563688605+3.845666332695652e-08j,
0.0001153652105925112+3.6224677316584614e-08j,
0.00011638635682516399+3.386843079212692e-08j,
0.00011836223959714231+3.6692295450490655e-08j))

fr = np.array((999.9999960000001, 794.328231, 630.957342,
501.18723099999994, 398.107168, 316.22776400000004,
251.188642, 199.52623, 158.489318, 125.89254, 99.999999,
79.432823, 63.095734, 50.118722999999996, 39.810717,
31.622776, 25.118864000000002, 19.952623000000003,
15.848932000000001, 12.589253999999999, 10.0,
7.943282000000001, 6.309573, 5.011872, 3.981072,
3.1622779999999997, 2.511886, 1.9952619999999999, 1.584893,
1.258925, 1.0, 0.7943279999999999, 0.630957,
0.5011869999999999, 0.398107, 0.316228, 0.251189, 0.199526,
0.15848900000000002, 0.125893, 0.1, 0.079433, 0.063096,
0.050119, 0.039811, 0.031623000000000005, 0.025119, 0.019953,
0.015849000000000002, 0.012589, 0.01))


data = np.concatenate((cdata.real, cdata.imag))

# model function for lmfit
def colecole_function(x, sig0, m, tau, c):
w = x*2*np.pi
denom = 1+(1j*w*tau)**c
sig = sig0*(1.0+(m/(1.0-m))*(1-1.0/denom))
return np.concatenate((sig.real, sig.imag))


mod = Model(colecole_function)
params = mod.make_params(sig0=0.002, m=-0.19, tau=0.05, c=0.8)

params['tau'].min = 0

result = mod.fit(data, params, x=fr)

print(result.fit_report())

然后你会想要绘制结果 nf = len(fr) plt.plot(fr, data[:nf], label='data(real)') plt.plot(fr, result.best_fit[:nf], label='fit(real)')

和类似的

plt.plot(fr, data[nf:], label='data(imag)')
plt.plot(fr, result.best_fit[nf:], label='fit(imag)')

请注意,我认为您将要允许 m 为负数(或者我可能误解了您的模型)。我没有仔细研究如何合身,但我认为这应该可以帮助您入门。

关于python - lmfit 最小化(或 scipy.optimize leastsq)复杂方程/数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54700835/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com