gpt4 book ai didi

python - 使用和不使用 GPU 编程的语法差异?

转载 作者:太空宇宙 更新时间:2023-11-04 04:18:48 24 4
gpt4 key购买 nike

我是深度学习的新手。我试图在 CPU 上运行 python 的深度学习代码,它工作正常,但相同的代码在带有 gpu 的 tensorflow 上不起作用。使用 GPU 的深度学习有语法差异吗?如果它的语法不同,那么任何入门 Material 都会有所帮助,谢谢。下面是在 CPU 上运行的二进制分类的简单代码,如果我想在 GPU 上运行它,我应该做哪些必要的更改?

# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense

# Initialising the CNN
classifier = Sequential()

# Step 1 - Convolution
classifier.add(Convolution2D(32, (3, 3), input_shape = (64, 64, 3),dilation_rate=(1,1), activation = 'relu', ))
classifier.add(Convolution2D(32, (3, 3),dilation_rate=(2,2), activation = 'relu', ))
classifier.add(Convolution2D(32, (3, 3),dilation_rate=(4,4), activation = 'relu', ))
#classifier.add(MaxPooling2D(pool_size = (2, 2)))

classifier.add(Convolution2D(64, (3, 3),dilation_rate=(1,1), activation = 'relu', ))
classifier.add(Convolution2D(64, (3, 3),dilation_rate=(2,2), activation = 'relu', ))
classifier.add(Convolution2D(64, (3, 3),dilation_rate=(4,4), activation = 'relu', ))



classifier.add(Convolution2D(128, (3, 3),dilation_rate=(1,1), activation = 'relu', ))
classifier.add(Convolution2D(128, (3, 3),dilation_rate=(2,2), activation = 'relu', ))
classifier.add(Convolution2D(128, (3, 3),dilation_rate=(4,4), activation = 'relu', ))


classifier.add(Convolution2D(256, (3, 3),dilation_rate=(1,1), activation = 'relu', ))
classifier.add(Convolution2D(256, (3, 3),dilation_rate=(2,2), activation = 'relu', ))
classifier.add(Convolution2D(256, (3, 3),dilation_rate=(4,4), activation = 'relu', ))

'''
classifier.add(Convolution2D(256, (3, 3),dilation_rate=(1,1), activation = 'relu', ))

#classifier.add(Convolution2D(512, (3, 3),dilation_rate=(2,2), activation = 'relu', ))
#classifier.add(Convolution2D(512, (3, 3),dilation_rate=(4,4), activation = 'relu', ))

classifier.add(Convolution2D(512, (3, 3),dilation_rate=(1,1), activation = 'relu', ))
#classifier.add(Convolution2D(1024, (3, 3),dilation_rate=(2,2), activation = 'relu', ))
#classifier.add(Convolution2D(1024, (3, 3),dilation_rate=(4,4), activation = 'relu', ))
'''

# Step 3 - Flattening
classifier.add(Flatten())

# Step 4 - Full connection
classifier.add(Dense(units = 256, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))

# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Part 2 - Fitting the CNN to the images

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range = 0.05,
zoom_range = 0.05,
horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('Data_base/Processing_Data/Training',
target_size = (64, 64),
batch_size = 20,
class_mode = 'binary')

test_set = test_datagen.flow_from_directory('Data_base/Processing_Data/Test',
target_size = (64, 64),
batch_size = 6,
class_mode = 'binary')

classifier.fit_generator(training_set,
samples_per_epoch =44 ,
nb_epoch = 20,
validation_data = test_set,
nb_val_samples =6 )
classifier.save_weights('first_try.h5')

最佳答案

您根本不需要对代码进行任何更改。

首先,如果您想使用 GPU,请确保您安装了 CUDA 和 cuDNN。您需要的版本取决于您的 GPU 和 TensorFlow 版本。有几个教程。

其次,不要在同一个环境中安装 tensorflow 和 tensorflow-gpu。至少对我来说这导致了一些奇怪的错误。(我不知道这是否已经修复。)

关于python - 使用和不使用 GPU 编程的语法差异?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54896938/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com