- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
似乎 tf.nn.dynamic_rnn
已被弃用:
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Please use keras.layers.RNN(cell), which is equivalent to this API
我检查了 keras.layers.RNN(cell),它说它可以使用掩码,我认为它可以替代 dynamic_rnn
的 sequence_length
范围?
This layer supports masking for input data with a variable number of timesteps. To introduce masks to your data, use an Embedding layer with the mask_zero parameter set to True.
但即使在嵌入文档中也没有关于如何使用 mask_zero=True
来适应可变序列长度的更多信息。另外,如果我使用嵌入层只是为了添加掩码,我该如何防止嵌入改变我的输入和接受训练?
类似这个问题RNN in Tensorflow vs Keras, depreciation of tf.nn.dynamic_rnn()但我想知道如何使用掩码替换 sequence_length
最佳答案
我也需要这个问题的答案,并通过您问题底部的链接弄清楚了我需要什么。
简而言之,您可以按照链接中的答案进行操作,但如果您对使用嵌入层不感兴趣,则可以“简单地”省去嵌入层。我强烈建议您阅读并理解 linked answer随着它进入更多细节,以及 Masking 上的文档,但这里有一个修改版本,它在序列输入上使用屏蔽层来替换“sequence_length”:
import numpy as np
import tensorflow as tf
pad_value = 0.37
# This is our input to the RNN, in [batch_size, max_sequence_length, num_features] shape
test_input = np.array(
[[[1., 1. ],
[2, 2. ],
[1., 1. ],
[pad_value, pad_value], # <- a row/time step which contains all pad_values will be masked through the masking layer
[pad_value, pad_value]],
[[pad_value, pad_value],
[1., 1. ],
[2, 2. ],
[1., 1. ],
[pad_value, pad_value]]])
# Define the mask layer, telling it to mask all time steps that contain all pad_value values
mask = tf.keras.layers.Masking(mask_value=pad_value)
rnn = tf.keras.layers.GRU(
1,
return_sequences=True,
activation=None, # <- these values and below are just used to initialise the RNN in a repeatable way for this example
recurrent_activation=None,
kernel_initializer='ones',
recurrent_initializer='zeros',
use_bias=True,
bias_initializer='ones'
)
x = tf.keras.layers.Input(shape=test_input.shape[1:])
m0 = tf.keras.Model(inputs=x, outputs=rnn(x))
m1 = tf.keras.Model(inputs=x, outputs=mask(x))
m2 = tf.keras.Model(inputs=x, outputs=rnn(mask(x)))
print('raw inputs\n', test_input)
print('raw rnn output (no mask)\n', m0.predict(test_input).squeeze())
print('masked inputs\n', m1.predict(test_input).squeeze())
print('masked rnn output\n', m2.predict(test_input).squeeze())
输出:
raw inputs
[[[1. 1. ]
[2. 2. ]
[1. 1. ]
[0.37 0.37]
[0.37 0.37]]
[[0.37 0.37]
[1. 1. ]
[2. 2. ]
[1. 1. ]
[0.37 0.37]]]
raw rnn output (no mask)
[[ -6. -50. -156. -272.7276 -475.83362 ]
[ -1.2876 -9.862801 -69.314 -213.94202 -373.54672 ]]
masked inputs
[[[1. 1.]
[2. 2.]
[1. 1.]
[0. 0.]
[0. 0.]]
[[0. 0.]
[1. 1.]
[2. 2.]
[1. 1.]
[0. 0.]]]
masked rnn output
[[ -6. -50. -156. -156. -156.]
[ 0. -6. -50. -156. -156.]]
请注意如何应用掩码,计算不会在掩码处于事件状态(即序列被填充的位置)的时间步长上执行。取而代之的是,前一个时间步的状态被向前推进。
其他几点需要注意:
[0.37, 2]
这些值仍将被馈送到网络,但是,时间步长为 [0.37, 0.37]
将被跳过。关于python - Tensorflow dynamic_rnn 弃用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55264696/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!