gpt4 book ai didi

python - 循环遍历数据框字典

转载 作者:太空宇宙 更新时间:2023-11-04 04:16:09 27 4
gpt4 key购买 nike

我有一组数据框,代表我放入字典中的需求场景。我需要遍历字典中的每个数据帧以重新索引和重新采样等,然后返回字典。当我循环遍历数据帧列表时,下面的代码可以完美运行,但我需要维护每个场景的身份,因此需要维护字典。

这是处理数据框列表的代码:

demand_dfs_list = [low_demand_df, med_low_demand_df, bc_demand_df, med_high_demand_df, high_demand_df]
dates = pd.date_range(start='2020-10-01', end='2070-09-30', freq='D')

demand_dfs_datetime = []
for df in demand_dfs_list:
df.index = pd.to_datetime(df.index, format='%Y')
df = df.tshift(-92, 'D')
df = df.resample('D').ffill()
df = df.reindex(dates)
demand_dfs_datetime.append(df)

这是我试过的字典形式:

demand_scenarios = {'low': low_demand_df, 'medium_low': med_low_demand_df, 'medium': bc_demand_df, 'medium_high': med_high_demand_df, 'high': high_demand_df}
dates = pd.date_range(start='2020-10-01', end='2070-09-30', freq='D')

demand_dict = {}
for df in demand_scenarios:
[df].index = pd.to_datetime([df].index, format='%Y')
[df] = [df].tshift(-92, 'D')
[df] = [df].resample('D').ffill()
[df] = [df].reindex(dates)
demand_dict[df] = df

跟进问题我使用以下方法将上面的 demand_dict 字典传递到 xarray 中:

demand_xarray = xr.Dataset(demand_dict, coords = {'customers': customers, 'time': dates})

但是我的数据集如下所示:

<xarray.Dataset>
Dimensions: (customers: 28, dim_0: 18262, dim_1: 28, time: 18262)
Coordinates:
* dim_0 (dim_0) datetime64[ns] 2020-10-01 2020-10-02 ... 2070-09-30
* dim_1 (dim_1) object 'Customer_1' ... 'Customer_x'
* customers (customers) <U29 'Customer_1' ... 'Customer_x'
* time (time) datetime64[ns] 2020-10-01 2020-10-02 ... 2070-09-30
Data variables:
low (dim_0, dim_1) float64 0.52 0.528 3.704 ... 7.744 0.92 64.47
medium_low (dim_0, dim_1) float64 0.585 0.594 4.167 ... 8.712 1.035 72.53
medium (dim_0, dim_1) float64 0.65 0.66 4.63 12.6 ... 9.68 1.15 80.59
medium_high (dim_0, dim_1) float64 0.715 0.726 5.093 ... 10.65 1.265 88.65
high (dim_0, dim_1) float64 0.78 0.792 5.556 ... 11.62 1.38 96.71

当我尝试像这样使用 drop_dims 函数时:

demand_xarray = xr.Dataset(demand_dict, coords = {'customers': customers, 'time': dates}).drop_dims(dim_0, dim_1)

我得到错误:

AttributeError: 'Dataset' object has no attribute 'drop_dims'

知道我为什么会收到此错误吗?

最佳答案

demand_scenarios = {'low': low_demand_df, 'medium_low': med_low_demand_df, 'medium': bc_demand_df, 'medium_high': med_high_demand_df, 'high': high_demand_df}
dates = pd.date_range(start='2020-10-01', end='2070-09-30', freq='D')

demand_dict = {}
for key, df in demand_scenarios.items():
df.index = pd.to_datetime([df].index, format='%Y')
df = df.tshift(-92, 'D')
df = df.resample('D').ffill()
df = df.reindex(dates)
demand_dict[key] = df

items() 返回字典的键和值

关于python - 循环遍历数据框字典,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55388844/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com