gpt4 book ai didi

python - 添加列并根据 Pandas 中的其他列填充缺失值

转载 作者:太空宇宙 更新时间:2023-11-04 04:12:55 24 4
gpt4 key购买 nike

对于下面的输入数据,我需要填充缺失的office_number,并创建一列来区分office_number是原始的还是后来填充的。

这是示例数据:

df = pd.DataFrame({'id':['1010084420','1010084420','1010084420','1010084421','1010084421','1010084421','1010084425'],
'building_name': ['A', 'A', 'A', 'East Tower', 'East Tower', 'West Tower', 'T1'],
'floor': ['1', '1', '2', '10', '10', '11','11'],
'office_number':['', '','205','','','', '1101-1105'],
'company_name': ['Ariel Resources Ltd.', 'A.O. Tatneft', '', 'Agrium Inc.', 'Creo Products Inc.', 'Cott Corp.', 'Creo Products Inc.']})
print(df)

输出:

           id building_name floor office_number          company_name
0 1010084420 A 1 Ariel Resources Ltd.
1 1010084420 A 1 A.O. Tatneft
2 1010084420 A 2 205
3 1010084421 East Tower 10 Agrium Inc.
4 1010084421 East Tower 10 Creo Products Inc.
5 1010084421 West Tower 11 Cott Corp.
6 1010084425 T1 11 1101-1105 Creo Products Inc.

对于具有相同idbuilding_namefloor 的办公室,当它为空时,我需要填写office_number , 具有以下规则:楼层值 + F + 001, 002, 003, etc.;并创建一列office_num_status,当它不为空时,插入original,否则filled

这是最终的预期结果:

           id building_name floor office_num_status office_number  \
0 1010084420 A 1 filled 1F001
1 1010084420 A 1 filled 1F002
2 1010084420 A 2 original 205
3 1010084421 East Tower 10 filled 10F001
4 1010084421 East Tower 10 filled 10F002
5 1010084421 West Tower 11 filled 11F001
6 1010084425 T1 11 original 1101-1105

company_name
0 Ariel Resources Ltd.
1 A.O. Tatneft
2
3 Agrium Inc.
4 Creo Products Inc.
5 Cott Corp.
6 Creo Products Inc.

我到目前为止所做的是创建列 office_num_status 但所有值都是 original:

# method 1
df['office_num_status'] = np.where(df['office_number'].isnull(), 'filled', 'original')

# method 2
df['office_num_status'] = ['filled' if x is None else 'original' for x in df['office_number']]

# method 3
df['office_num_status'] = 'filled'
df.loc[df['office_number'] is not None, 'office_num_status'] = 'original'

有人可以帮我完成这个吗?非常感谢。

最佳答案

比较丢失的字符串而不是丢失的值,通过GroupBy.cumcount添加计数器并填充不存在的值:

mask = df['office_number'] == ''
df.insert(3, 'office_num_status', np.where(mask, 'filled', 'original'))
s = df.groupby(['id','building_name','floor']).cumcount().add(1).astype(str).str.zfill(3)
df.loc[mask, 'office_number'] = df['floor'].astype(str) + 'F' + s
print (df)
id building_name floor office_num_status office_number \
0 1010084420 A 1 filled 1F001
1 1010084420 A 1 filled 1F002
2 1010084420 A 2 original 205
3 1010084421 East Tower 10 filled 10F001
4 1010084421 East Tower 10 filled 10F002
5 1010084421 West Tower 11 filled 11F001
6 1010084425 T1 11 original 1101-1105

company_name
0 Ariel Resources Ltd.
1 A.O. Tatneft
2
3 Agrium Inc.
4 Creo Products Inc.
5 Cott Corp.
6 Creo Products Inc.

关于python - 添加列并根据 Pandas 中的其他列填充缺失值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56018957/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com