gpt4 book ai didi

python - 如何使用 iterrows 通过函数循环数据帧,该函数采用 3 个参数来填充新数据帧

转载 作者:太空宇宙 更新时间:2023-11-04 04:12:06 25 4
gpt4 key购买 nike

我有什么:

1) GPS 坐标列表:纬度、经度和 ID。

2) 一个定义的函数来抓取最近 24 小时的每小时温度和湿度数据。它返回一个包含 3 列的数据框:温度、湿度、ID 和每小时数据作为 DatetimeIndex。该函数接受 3 个参数:lat、lon、ID。

我想要的:

  • 编辑函数以在每次传递 iterrows 时加入 ID 列

这是适用于一个纬度/经度/ID 集的函数:

# grab only weather of interest
attributes = [u'temperature', u'humidity']

# 24 hours ago #round to closest hour
date = dt.datetime.now().replace(microsecond=0,second=0,minute=0) -
dt.timedelta(hours=24)

#initalize
times = []
data = {}
for attr in attributes:
data[attr] = []

def scrape_weather(LAT, LON, Id):
for offset in range(1,2): #i.e 1 day
forecast = forecastio.load_forecast(api_key, LAT, LON,
time=date+dt.timedelta(offset), units = 'ca' )
h = forecast.hourly()
d = h.data
for p in d:
times.append(p.time)
try:
for i in attributes:
data[i].append(p.d[i])
except:
print(KeyError)

df2 = pd.DataFrame(data)
df1 = pd.DataFrame(times)

df1.reset_index(drop=True, inplace=True)
df2.reset_index(drop=True, inplace=True)
dfweather = pd.concat([df1, df2], axis=1)

dfweather['ID'] = Id
dfweather = dfweather.set_index(pd.DatetimeIndex(dfweather[0]))
dfweather = dfweather.drop([0], axis=1)

return dfweather

当使用 lat/lon/Ids 传递数据框的单列时,这很好用

scrape_weather(df.at[0,'latitude'],df.at[0,'longitude'], df.at[0,'Id'])

但是当我经过的时候

for index, row in dummy_gps.iterrows():
test = scrape_weather(row['longitude'],row['latitude'], row['Id'])

预期的结果看起来像这样:

                 temperature humidity ID

2019-05-14 07:00:00 22.58 0.34 1
2019-05-14 08:00:00 20.50 0.42 1
....
2019-05-14 07:00:00 22.58 0.34 2
2019-05-14 08:00:00 20.50 0.42 2
....

但是 ID 是错误的,只有一个 ID 被复制粘贴到每个人身上,如下所示:

                 temperature humidity ID

2019-05-14 07:00:00 22.58 0.34 2
2019-05-14 08:00:00 20.50 0.42 2
....
2019-05-14 07:00:00 22.58 0.34 2
2019-05-14 08:00:00 20.50 0.42 2
....

所以我不确定在天气抓取功能的哪个位置添加 ID 逻辑以确保每个 ID 都与每个预报相关联

最佳答案

新答案

import pandas as pd
import forecastio
import datetime as dt


def scrape_weather(row):
forecast = forecastio.load_forecast(api_key,
lat = row['latitude'],
lng = row['longitude'],
time = date,
units = 'ca' )
h = forecast.hourly()
d = h.data
dfweather = pd.DataFrame({'times': [p.time for p in d],
'temps': [p.temperature for p in d],
'humidity': [p.humidity for p in d],
'gatewayID': row['Id']
})

return dfweather


# Sample dataframe
id_col = [1, 2, 3, 4, 5, 6, 7]
lng = ['86.44511', '-121.13295', '-162.74005', '22.34765', '-152.18709', '-152.18709', '-107.65340']
lat = ['-18.67825', '-20.84215', '57.31227', '6.15070', '-27.72616', '-27.72616', '6.15863']
df = pd.DataFrame({'Id':id_col, 'latitude':lat, 'longitude':lng})

api_key = ###############################

# 24 hours ago #round to closest hour
date = dt.datetime.now().replace(microsecond=0,second=0,minute=0) - dt.timedelta(hours=24)

out = df.apply(scrape_weather, axis=1)
out = pd.concat([df for df in out])

旧答案

如果我没理解错的话,你能做这样的事情吗?

df = pd.DataFrame({'LAT':[1,2,3],'LON':[1,2,3],'ID':[1,2,3]})

def scrape_weather(row):
temperature = row['LAT'] # change this to what you need to do
humidity = row['LON'] # change this to what you need to do
id = row['ID'] # change this to what you need to do
return temperature, humidity, id

new_df = pd.DataFrame(columns=['temp', 'hum', 'id'])
new_df['temp'], new_df['hum'], new_df['id'] = df.apply(scrape_weather, axis=1)

这给了我

    temp    hum     id
0 1 2 3
1 1 2 3
2 1 2 3

关于python - 如何使用 iterrows 通过函数循环数据帧,该函数采用 3 个参数来填充新数据帧,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56139258/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com