- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个代码将 Tensorflow Probability(需要 TF 2.00)与 Keras Pruning 混合,修剪第一个密集层的权重并为 TF 概率提供输入,在同一模型中具有两个代码(Keras + TF)。代码:
from tensorflow_model_optimization.sparsity import keras as sparsity
from tensorflow.python import keras
import numpy as np
tf.disable_v2_behavior()
epochs = 50
num_train_samples = x1.shape[0]
end_step = 500
print('End step: ' + str(end_step))
tfd = tfp.distributions
input_shape=x1.shape
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
pruned_model = tf.keras.Sequential([
sparsity.prune_low_magnitude(
tf.keras.layers.Dense(1, activation='relu'),**pruning_params),
tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1))
])
negloglik = lambda x, rv_x: -rv_x.log_prob(x)
pruned_model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0001), loss=negloglik)
callbacks = [
pruning_callbacks.UpdatePruningStep(),
pruning_callbacks.PruningSummaries(log_dir="D:\Python\logs2", profile_batch=0)]
# ERROR HERE IN .fit()
pruned_model.fit(x1,y, epochs=50, verbose=True, batch_size=16,callbacks=callbacks)
yhat2 = pruned_model(np.array(dataframe.iloc[:,1]).T.astype(np.float32).reshape(-1,1)[650:800])
mean02 = tf.convert_to_tensor(yhat2)
mean2 = sess.run(mean02)
stddev2 = yhat2.stddev()
mean_plus_2_std2 = sess.run(mean2 - 3. * stddev2)
mean_minus_2_std2 = sess.run(mean2 + 3. * stddev2)
错误详情:
File "<ipython-input-129-a0ad4118e99e>", line 1, in <module>
pruned_model.fit(x1,y, epochs=50, verbose=True, batch_size=16,callbacks=callbacks)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py", line 806, in fit
shuffle=shuffle)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py", line 2503, in _standardize_user_data
self._set_inputs(cast_inputs)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\training\tracking\base.py", line 456, in _method_wrapper
result = method(self, *args, **kwargs)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py", line 2773, in _set_inputs
outputs = self.call(inputs, training=training)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\sequential.py", line 256, in call
outputs = layer(inputs, **kwargs)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 594, in __call__
self._maybe_build(inputs)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 1713, in _maybe_build
self.build(input_shapes)
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow_model_optimization\python\core\sparsity\keras\pruning_wrapper.py", line 175, in build
self.prunable_weights = self.layer.get_prunable_weights()
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow_model_optimization\python\core\sparsity\keras\prune_registry.py", line 169, in get_prunable_weights
return [getattr(layer, weight) for weight in cls._weight_names(layer)]
File "C:\Users\Rubens\Anaconda3\lib\site-packages\tensorflow_model_optimization\python\core\sparsity\keras\prune_registry.py", line 169, in <listcomp>
return [getattr(layer, weight) for weight in cls._weight_names(layer)]
AttributeError: 'Dense' object has no attribute 'kernel'
我的问题是:如何将 Keras 层 (prune_low_magnitude) 转换为 Tensorflow,或者如何将 Tensorflow 概率层 (tfp.layers.DistributionLambda) 转换为 Keras 并正确训练模型?
notebook使用Keras==2.2.4和Tensorflow==2.0.0a0
最佳答案
我找到了解决方案。我安装了:
! pip install --upgrade tfp-nightly
! pip install tf_nightly
! pip install tf_estimator_nightly
关于python - 将 Keras 转换为 TensorFlow——剪枝+概率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56224426/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!