gpt4 book ai didi

python - 无需替换数组的快速组合 - NumPy/Python

转载 作者:太空宇宙 更新时间:2023-11-04 04:04:49 25 4
gpt4 key购买 nike

我正在从一维数组生成有效的成对组合。如果 n > 1000

,Itertools 的效率太低了
E.g. [1, 2, 3, 4]

magic code...

Out[2]:
array([[1, 2],
[1, 3],
[1, 4],
[2, 3],
[2, 4],
[3, 4]])

最接近的是here .

最佳答案

我。成对组合

一种方法是使用 numba 来获得内存,从而提高性能 -

from numba import njit

@njit
def pairwise_combs_numba(a):
n = len(a)
L = n*(n-1)//2
out = np.empty((L,2),dtype=a.dtype)
iterID = 0
for i in range(n):
for j in range(i+1,n):
out[iterID,0] = a[i]
out[iterID,1] = a[j]
iterID += 1
return out

另一个基于 NumPy 的将使用 np.broadcast_to获取 meshgrid View ,然后进行 mask -

def pairwise_combs_mask(a):
n = len(a)
L = n*(n-1)//2
out = np.empty((L,2),dtype=a.dtype)
m = ~np.tri(len(a),dtype=bool)
out[:,0] = np.broadcast_to(a[:,None],(n,n))[m]
out[:,1] = np.broadcast_to(a,(n,n))[m]
return out

二。三重组合

我们将扩展相同的方法来获得三元组组合 -

@njit
def triplet_combs_numba(a):
n = len(a)
L = n*(n-1)*(n-2)//6
out = np.empty((L,3),dtype=a.dtype)
iterID = 0
for i in range(n):
for j in range(i+1,n):
for k in range(j+1,n):
out[iterID,0] = a[i]
out[iterID,1] = a[j]
out[iterID,2] = a[k]
iterID += 1
return out

def triplet_combs_mask(a):
n = len(a)
L = n*(n-1)*(n-2)//6
out = np.empty((L,3),dtype=a.dtype)
r = np.arange(n)
m = (r[:,None,None]<r[:,None]) & (r[:,None]<r)
out[:,0] = np.broadcast_to(a[:,None,None],(n,n,n))[m]
out[:,1] = np.broadcast_to(a[None,:,None],(n,n,n))[m]
out[:,2] = np.broadcast_to(a[None,None,:],(n,n,n))[m]
return out

更高阶的组合将同样扩展。

样本运行-

In [54]: a = np.array([3,9,4,1,7])

In [55]: pairwise_combs_numba(a)
Out[55]:
array([[3, 9],
[3, 4],
[3, 1],
[3, 7],
[9, 4],
[9, 1],
[9, 7],
[4, 1],
[4, 7],
[1, 7]])

In [56]: triplet_combs_numba(a)
Out[56]:
array([[3, 9, 4],
[3, 9, 1],
[3, 9, 7],
[3, 4, 1],
[3, 4, 7],
[3, 1, 7],
[9, 4, 1],
[9, 4, 7],
[9, 1, 7],
[4, 1, 7]])

计时(包括 Python 的内置 - itertools.combinations )-

In [68]: a = np.random.rand(4000)

In [69]: %timeit pairwise_combs_numba(a)
...: %timeit pairwise_combs_mask(a)
...: %timeit list(itertools.combinations(a, 2))
10 loops, best of 3: 52.2 ms per loop
10 loops, best of 3: 146 ms per loop
1 loop, best of 3: 597 ms per loop

In [70]: a = np.random.rand(400)

In [71]: %timeit triplet_combs_numba(a)
...: %timeit triplet_combs_mask(a)
...: %timeit list(itertools.combinations(a, 3))
10 loops, best of 3: 98.5 ms per loop
1 loop, best of 3: 352 ms per loop
1 loop, best of 3: 795 ms per loop

关于python - 无需替换数组的快速组合 - NumPy/Python,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57564874/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com