gpt4 book ai didi

python - 如何将多迹线图制作为可重用代码?

转载 作者:太空宇宙 更新时间:2023-11-04 04:02:24 25 4
gpt4 key购买 nike

我以某种方式试图为 bar_graph 制作可重用的绘图代码:

def bar(x,y,text,marker,orientation,name):
barchart=[go.Bar(x=x,y=y,text=text,marker=marker,orientation=orientation,name=name)]
........

以类似的方式,我怎样才能为多个跟踪创建可重用的代码?

对于下面的代码,

fig = go.Figure()

# Add Traces

fig.add_trace(
go.Scatter(x=list(df.index),
y=list(df.High),
name="High",
line=dict(color="#33CFA5")))

fig.add_trace(
go.Scatter(x=list(df.index),
y=[df.High.mean()] * len(df.index),
name="High Average",
visible=False,
line=dict(color="#33CFA5", dash="dash")))

fig.add_trace(
go.Scatter(x=list(df.index),
y=list(df.Low),
name="Low",
line=dict(color="#F06A6A")))fig.update_layout(
updatemenus=[
go.layout.Updatemenu(
active=0,
buttons=list([
dict(label="None",
method="update",
args=[{"visible": [True, False, True, False]},
{"title": "Yahoo",
"annotations": []}]),
dict(label="High",
method="update",
args=[{"visible": [True, True, False, False]},
{"title": "Yahoo High",
"annotations": high_annotations}]),
dict(label="Low",
method="update",
args=[{"visible": [False, False, True, True]},
{"title": "Yahoo Low",
"annotations": low_annotations}]),

]),
)
])

# Set title
fig.update_layout(title_text="Yahoo")

fig.show()

在这里,踪迹可以是任意的,即基于为每个踪迹传递的值的组合,那么我如何才能将其作为可重用代码?

.....

最佳答案

您可以轻松地遍历数据框的列,并为每个列创建跟踪,如下面的代码片段所示。

# crate traces
traces={}
for col in df.columns:
traces['trace_' + col]=go.Bar(x=df.index, name=col, y=df[col])

# convert data to form required by plotly
data=list(traces.values())

# build figure
fig=go.Figure(data)
fig.show()

在评论和聊天中与 OP 对话后编辑建议。

如果没有可重现的数据样本,就很难提出完美的解决方案。但这里有一个可重复使用的建议:

(1):它在源数据框中的列数方面很灵活,并使用 for 循环按要求添加跟踪,

(2):它为每一列计算 max() 和 min(),

(3):它被构造为一个函数,可以轻松应用于任何数据框。

我整理了一些示例数据,如下所示:

enter image description here

plotly 1:

enter image description here

代码 1:

# Imports
import pandas as pd
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import numpy as np

# data
humid = pd.Series(np.random.uniform(low=25, high=40, size=6).tolist())
windy = pd.Series(np.random.uniform(low=40, high=60, size=6).tolist())
df = pd.concat([humid,windy], axis = 1)
df.columns=['Humidity', 'windspeed']
df.index = ['Shanghai', 'Houston', 'Venice', 'Munich', 'Milan', 'Turin']


def plotMaxMin(df):
for col in df.columns:
#print(df[col].max())
df[col+'_max']=df[col].max()
df[col+'_min']=df[col].min()

# crate traces
traces={}
for col in df.columns:
traces['trace_' + col]=go.Scatter(x=df.index, name=col, y=df[col])

# convert data to form required by plotly
data=list(traces.values())

# build figure
fig=go.Figure(data)
fig.show()

plotMaxMin(df=df)

使用编辑后的数据框测试可重用性:

plotly 2:

enter image description here

代码 2:

df2=df.copy(deep=True)
df2['Temperature']=pd.Series(np.random.uniform(low=-5, high=40, size=6).tolist())

plotMaxMin(df2)

我们仍然缺少 updatemnu()。事实上,只需单击系列的名称, plotly 仍然非常互动。

用 go.layout.Updatemenu() 测试

这将需要更多调整才能完美,但主要功能似乎已经到位,所以我希望您能够添加一些东西以使其与您的数据集一样精确。

plotly 3:

enter image description here

代码 3:

# Imports
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# data
humid = pd.Series(np.random.uniform(low=25, high=40, size=6).tolist())
windy = pd.Series(np.random.uniform(low=40, high=60, size=6).tolist())
df = pd.concat([humid,windy], axis = 1)
df.columns=['Humidity', 'windspeed']
df.index = ['Shanghai', 'Houston', 'Venice', 'Munich', 'Milan', 'Turin']


def plotMaxMin(df):
for col in df.columns:
#print(df[col].max())
df[col+'_max']=df[col].max()
df[col+'_min']=df[col].min()

# crate traces
traces={}
for col in df.columns:
traces['trace_' + col]=go.Scatter(x=df.index, name=col, y=df[col])

# convert data to form required by plotly
data=list(traces.values())

# build figure
fig=go.Figure(data)

# add dropdown functionality

fig.update_layout(
updatemenus=[
go.layout.Updatemenu(
active=0,
buttons=list([
dict(label="None",
method="update",
args=[{"visible": [True, False, True, False]},
{"title": "Yahoo",
"annotations": []}]),
dict(label="High",
method="update",
args=[{"visible": [True, True, False, False]},
{"title": "Yahoo High",
"annotations": high_annotations}]),
dict(label="Low",
method="update",
args=[{"visible": [False, False, True, True]},
{"title": "Yahoo Low",
"annotations": high_annotations}]),

]),
)
])



fig.show()

plotMaxMin(df=df)

编辑 2:有关如何使用更多参数扩展函数以自定义您的绘图的示例

plotly 4:

enter image description here

代码 4:

# Imports
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# data
humid = pd.Series(np.random.uniform(low=25, high=40, size=6).tolist())
windy = pd.Series(np.random.uniform(low=40, high=60, size=6).tolist())
df = pd.concat([humid,windy], axis = 1)
df.columns=['Humidity', 'Windspeed']
df.index = ['Shanghai', 'Houston', 'Venice', 'Munich', 'Milan', 'Turin']


def plotMaxMin(df, colors):
"""Adds max and min for all df columns and plots the data using plotly

Arguments:
==========
df - pandas dataframe
colors - dictionary with single word to identify line category and assign color

Example call:
=============
plotMaxMin(df=df, colors={'wind':'#33CFA5', 'humidity':'#F06A6A'})

"""


# add max and min for each input column
for col in df.columns:
df[col+'_max']=df[col].max()
df[col+'_min']=df[col].min()

# sort df columns by name
df = df.reindex(sorted(df.columns), axis=1)

# crate traces
traces={}
for col in df.columns:

# format traces
if 'Humid' in col:
linecolor = colors['humidity']

if 'Wind' in col:
linecolor = colors['wind']

traces['trace_' + col]=go.Scatter(x=df.index, name=col, y=df[col], line=dict(color=linecolor))

# convert data to form required by plotly
data=list(traces.values())

# build figure
fig=go.Figure(data)

# uncomment bloew section to add dropdown functionality

#fig.update_layout(
#updatemenus=[
# go.layout.Updatemenu(
# active=0,
# buttons=list([
# dict(label="None",
# method="update",
# args=[{"visible": [True, False, True, False]},
# {"title": "Yahoo",
# "annotations": []}]),
# dict(label="High",
# method="update",
# args=[{"visible": [True, True, False, False]},
# {"title": "Yahoo High",
# "annotations": high_annotations}]),
# dict(label="Low",
# method="update",
# args=[{"visible": [False, False, True, True]},
# {"title": "Yahoo Low",
# "annotations": high_annotations}]),
# ]),
# )
#])



fig.show()

plotMaxMin(df=df, colors={'wind':'#33CFA5', 'humidity':'#F06A6A'})

关于python - 如何将多迹线图制作为可重用代码?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57975944/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com