- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我目前正在从事在线签名验证。数据集具有 (x, 7) 的可变形状,其中 x 是一个人用来签名的点数。我有以下模型:
model = Sequential()
#CNN
model.add(Conv1D(filters=64, kernel_size=3, activation='sigmoid', input_shape=(None, 7)))
model.add(MaxPooling1D(pool_size=3))
model.add(Conv1D(filters=64, kernel_size=2, activation='sigmoid'))
#RNN
model.add(Masking(mask_value=0.0))
model.add(LSTM(8))
model.add(Dense(2, activation='softmax'))
opt = Adam(lr=0.0001)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
print(model.fit(x_train, y_train, epochs=100, verbose=2, batch_size=50))
score, accuracy = model.evaluate(x_test,y_test, verbose=2)
print(score, accuracy)
我知道它可能不是最好的模型,但这是我第一次构建神经网络。我必须使用 CNN 和 RNN,因为这是我的荣誉项目所必需的。目前,我达到了 0.5142 作为最高训练精度和 0.54 测试精度。我试过增加 epoch 的数量、改变激活函数、添加更多层、移动层、改变学习率和改变优化器。
请分享一些关于更改我的模型或数据集的建议。任何帮助深表感谢。
最佳答案
对于 CNN-RNN,一些有前途的尝试:
activation='relu'
, kernel_initializer='he_normal'
activation='tanh'
, 和 recurrent_dropout=.1, .2, .3
Nadam
, lr=2e-4
(Nadam 可能明显优于所有其他 RNN 优化器)batch_size=32
;较低的批量大小可以更好地利用优化器的随机机制,并可以提高泛化能力Conv1D
, 率 .1, .2
- 或者,在第一个 Conv1D
之后, 率 .25, .3
,但仅如果您使用 SqueezeExcite(见下文),否则 MaxPooling
效果不佳Conv1D
Conv1D
, 以防止它记住输入;尝试 1e-5, 1e-4
,例如kernel_regularizer=l2(1e-4) # from keras.regularizers import l2
def SqueezeExcite(_input):
filters = _input._keras_shape[-1]
se = GlobalAveragePooling1D()(_input)
se = Reshape((1, filters))(se)
se = Dense(filters//16,activation='relu',
kernel_initializer='he_normal', use_bias=False)(se)
se = Dense(filters, activation='sigmoid',
kernel_initializer='he_normal', use_bias=False)(se)
return multiply([_input, se])
# Example usage
x = Conv1D(filters=64, kernel_size=4, activation='relu', kernel_initializer='he_normal')(x)
x = SqueezeExcite(x) # place after EACH Conv1D
关于python - CNN 后跟用于签名验证的 RNN 的训练和测试准确性不会增加,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58043002/
我使用 tensorflow 实现了一个简单的 RNN 模型来学习时间序列数据的可能趋势并预测 future 值。然而,该模型总是在训练后产生相同的值。实际上,它得到的最佳模型是: y = b. RN
我正在关注this tutorial关于循环神经网络。 这是导入: import tensorflow as tf from tensorflow.examples.tutorials.mnist i
一段时间以来,我一直在苦思冥想,无法弄清楚我在实现这些 RNN 时做错了什么(如果有的话)。为了让你们省去前向阶段,我可以告诉你们这两个实现计算相同的输出,所以前向阶段是正确的。问题出在倒退阶段。 这
我正在用 RNN 练习。我随机创建 5 个整数。如果第一个整数是奇数,则 y 值为 1,否则 y 为 0(因此,只有第一个 x 有效)。问题是,当我运行这个模型时,它不会“学习”:val_loss 和
我正在使用 bidirectional_rnn与 GRUCell但这是一个关于 Tensorflow 中 RNN 的普遍问题。 我找不到如何初始化权重矩阵(输入到隐藏,隐藏到隐藏)。它们是随机初始化的
我正在尝试找出适应开放命名实体识别问题的最佳模型(生物学/化学,因此不存在实体字典,但必须通过上下文来识别它们)。 目前我最好的猜测是调整 Syntaxnet,这样它就不会将单词标记为 N、V、ADJ
我正在通过以下方式训练 RNN: def create_rnn_model(stateful,length): model = Sequential() model.add(Simpl
我对 PyTorch 非常陌生,而且对一般神经网络也相当陌生。 我试图构建一个可以猜测性别名字的神经网络,并且基于判断国籍的 PyTorch RNN 教程。 我的代码运行没有错误,但损失几乎没有变化,
我正在尝试训练一个模型,返回单词序列(RNN)的类。 我为我的模型提供一系列嵌入: [ batchSize, sequence_length, word_embedding ] as float[]
我正在尝试预测输入向量中每个数字的类别。有3个类(class)。如果输入值从 0 变为 1,则为 1 类。如果从 1 变为 0,则为 2 类。否则为 0 类。 在第二个纪元之后,精度停留在 0.882
我正在尝试为我的日志分析项目开发一个顺序 RNN。 输入是一个日志序列,例如 [1,2,3,4,5,6,1,5,2,7,8,2,1] 目前我正在使用 keras 库中的 to_categorical
为了加深我对 RNN 和 LSTM 的理解,我正在尝试实现一个简单的 LSTM 来估计正弦波的频率和相位。事实证明,这出奇地难以收敛。 MSE 相当高(以千为单位)唯一似乎有点工作的是,如果我生成所有
请帮助我编写以下代码,当我尝试直接在数据上拟合模型时,该代码运行良好,但在网格搜索上失败(我已注释掉直接 model.fit()我的 grid.fit() 语句末尾的部分,这给了我满意的结果。还请告诉
前提1: 关于 RNN 层中的神经元 - 我的理解是,在“每个时间步,每个神经元都接收输入向量 x (t) 和前一个时间步的输出向量 y (t –1)”[1]: 前提2: 据我了解,在 Pytorch
我想训练一个 RNN 来解决一个简单的回归问题。我有一个形状为 (35584,) 的数组 X_train,它表示几年来每小时的测量值。我还有相应的 Y_train 形状为 (35584,) 作为预期值
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 4 年前。 Improve this qu
pytorch实现变长输入的rnn分类 输入数据是长度不固定的序列数据,主要讲解两个部分 1、Data.DataLoader的collate_fn用法,以及按batch进行padding数据
基于循环神经网络(RNN)的古诗生成器,具体内容如下 之前在手机百度上看到有个“为你写诗”功能,能够随机生成古诗,当时感觉很酷炫= = 在学习了深度学习后,了解了一下原理,打算自己做个实现练练手
使用循环神经网络(RNN)实现影评情感分类 作为对循环神经网络的实践,我用循环神经网络做了个影评情感的分类,即判断影评的感情色彩是正面的,还是负面的。 选择使用RNN来做情感分类,主要是因为影评
我的目标是在 Keras/TensorFlow 中构建一个 RNN,它由循环单元层(GRU、LSTM 等)以及从网络底部到顶部的循环组成,以添加注意力机制或特殊的内存类型。我不熟悉符号循环,所以首先我
我是一名优秀的程序员,十分优秀!