在 n 层神经网络中计算梯度的最佳实现是什么?
权重层:
- 第一层权重:
(n_inputs+1, n_units_layer)-matrix
- 隐藏层权重:
(n_units_layer+1, n_units_layer)-matrix
- 最后一层权重:
(n_units_layer+1, n_outputs)-matrix
注意事项:
- 如果只有一个隐藏层,我们将只使用两个(权重)层来表示网络:
输入 --first_layer-> network_unit --second_layer-> 输出
- 对于具有多个隐藏层的n层网络,我们需要实现步骤(2)。
有点模糊的伪代码:
weight_layers = [ layer1, layer2 ] # a list of layers as described above
input_values = [ [0,0], [0,0], [1,0], [0,1] ] # our test set (corresponds to XOR)
target_output = [ 0, 0, 1, 1 ] # what we want to train our net to output
output_layers = [] # output for the corresponding layers
for layer in weight_layers:
output <-- calculate the output # calculate the output from the current layer
output_layers <-- output # store the output from each layer
n_samples = input_values.shape[0]
n_outputs = target_output.shape[1]
error = ( output-target_output )/( n_samples*n_outputs )
""" calculate the gradient here """
最终实现
The final implementation is available at github .
使用 Python 和 numpy 很容易。
你有两个选择:
- 您可以为
num_instances
个实例并行计算所有内容,或者
- 您可以计算一个实例的梯度(这实际上是 1 的特例)。
现在我将给出一些如何实现选项 1 的提示。我建议您创建一个名为 Layer
的新类。它应该有两个功能:
forward: inputs: X: shape = [num_instances, num_inputs] inputs W: shape = [num_outputs, num_inputs] weights b: shape = [num_outputs] biases g: function activation function outputs: Y: shape = [num_instances, num_outputs] outputsbackprop: inputs: dE/dY: shape = [num_instances, num_outputs] backpropagated gradient W: shape = [num_outputs, num_inputs] weights b: shape = [num_outputs] biases gd: function calculates the derivative of g(A) = Y based on Y, i.e. gd(Y) = g'(A) Y: shape = [num_instances, num_outputs] outputs X: shape = [num_instances, num_inputs] inputs outputs: dE/dX: shape = [num_instances, num_inputs] will be backpropagated (dE/dY of lower layer) dE/dW: shape = [num_outputs, num_inputs] accumulated derivative with respect to weights dE/db: shape = [num_outputs] accumulated derivative with respect to biases
The implementation is simple:
def forward(X, W, b):
A = X.dot(W.T) + b # will be broadcasted
Y = g(A)
return Y
def backprop(dEdY, W, b, gd, Y, X):
Deltas = gd(Y) * dEdY # element-wise multiplication
dEdX = Deltas.dot(W)
dEdW = Deltas.T.dot(X)
dEdb = Deltas.sum(axis=0)
return dEdX, dEdW, dEdb
第一层的
X
是从数据集中获取的,然后将每个 Y
作为下一层的 X
传递前传。
输出层的dE/dY
被计算为Y-T
,其中 Y
是网络的输出 (shape = [num_instances, num_outputs]),T
(shape = [num_instances, num_outputs]) 是所需的输出。然后你可以反向传播,即每一层的dE/dX
是上一层的dE/dY
。
现在可以使用每一层的dE/dW
和dE/db
来更新W
和b
.
这是 C++ 的示例:OpenANN .
顺便说一句。你可以比较 instance-wise 和 batch-wise 前向传播的速度:
In [1]: import timeit
In [2]: setup = """import numpy
...: W = numpy.random.rand(10, 5000)
...: X = numpy.random.rand(1000, 5000)"""
In [3]: timeit.timeit('[W.dot(x) for x in X]', setup=setup, number=10)
Out[3]: 0.5420958995819092
In [4]: timeit.timeit('X.dot(W.T)', setup=setup, number=10)
Out[4]: 0.22001314163208008
我是一名优秀的程序员,十分优秀!