- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我刚刚开始使用 Python For Data Analysis 学习使用 python 进行网络分析书,我对做一些 groupby 时遇到的异常感到困惑...这是我的情况。
我有一个已导入到 pandas 的 NetFlow 数据的 CSV。数据看起来像这样:
dt, srcIP, srcPort, dstIP, dstPort, bytes
2013-06-06 00:00:01.123, 123.123.1.1, 12345, 234.234.1.1, 80, 75
我已按如下方式导入和索引数据:
df = pd.read_csv('mycsv.csv')
df.index = pd.to_datetime(full_set.pop('dt'))
我想要的是每个时间段访问我的服务器的唯一 srcIPs 的计数(我有几天的数据,我想要按日期、小时的时间段)。我可以通过如下分组和绘制来获得整体流量图:
df.groupby([lambda t: t.date(), lambda t: t.hour]).srcIP.nunique().plot()
但是,我想知道总流量是如何在我的服务器之间分配的。我的直觉是另外按“dstIP”列(只有 5 个唯一值)进行分组,但是当我尝试在 srcIP 上聚合时出现错误。
grouped = df.groupby([lambda t: t.date(), lambda t: t.hour, 'dstIP'])
grouped.sip.nunique()
...
Exception: Reindexing only valid with uniquely valued Index objects
因此,我的具体问题是:如何避免此异常以创建一个图表,其中流量在 1 小时内聚合并且每个服务器都有不同的系列。
更一般地说,请让我知道我犯了哪些新错误。此外,数据没有常规频率时间戳,我不想要采样数据,以防对您的答案产生任何影响。
编辑 1这是我的 ipython session ,与输入完全一样。除了错误中最深的几个调用外,输出被省略。
编辑 2将 pandas 从 0.8.0 升级到 0.12.0 会产生如下所示的更具描述性的异常
import numpy as np
import pandas as pd
import time
import datetime
full_set = pd.read_csv('june.csv', parse_dates=True, index_col=0)
full_set.sort_index(inplace=True)
gp = full_set.groupby(lambda t: (t.date(), t.hour, full_set['dip'][t]))
gp['sip'].nunique()
...
/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.pyc in _make_labels(self)
1239 raise Exception('Should not call this method grouping by level')
1240 else:
-> 1241 labs, uniques = algos.factorize(self.grouper, sort=self.sort)
1242 uniques = Index(uniques, name=self.name)
1243 self._labels = labs
/usr/local/lib/python2.7/dist-packages/pandas/core/algorithms.pyc in factorize(values, sort, order, na_sentinel)
123 table = hash_klass(len(vals))
124 uniques = vec_klass()
--> 125 labels = table.get_labels(vals, uniques, 0, na_sentinel)
126
127 labels = com._ensure_platform_int(labels)
/usr/local/lib/python2.7/dist-packages/pandas/hashtable.so in pandas.hashtable.PyObjectHashTable.get_labels (pandas/hashtable.c:12229)()
/usr/local/lib/python2.7/dist-packages/pandas/core/generic.pyc in __hash__(self)
52 def __hash__(self):
53 raise TypeError('{0!r} objects are mutable, thus they cannot be'
---> 54 ' hashed'.format(self.__class__.__name__))
55
56 def __unicode__(self):
TypeError: 'TimeSeries' objects are mutable, thus they cannot be hashed
最佳答案
所以我不是 100% 确定为什么会引发该异常..但有一些建议:
您可以使用 read_csv
一次性读入数据并解析日期时间和索引:
df = pd.read_csv('mycsv.csv', parse_dates=True, index_col=0)
然后您可以使用返回值元组的 lambda 函数来组成您的组:
gp = df.groupby( lambda t: ( t.date(), t.hour, df['dstIP'][t] ) )
此 lambda 函数的输入是索引,我们可以使用此索引进入外部作用域中的数据框并检索该索引处的 srcIP
值,从而将其纳入分组。
现在我们有了分组,我们可以应用聚合器了:
gp['srcIP'].nunique()
关于python - groupby pandas 期间的异常,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18841530/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!