- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
您好,我正在尝试为我的三个指数衰减中的每一个生成一个拟合。我没有成功地制作出令人满意的合身。这就是我得到的:http://i.imgur.com/Nx44wsS.jpg
非常感谢任何帮助。我的代码如下。
import pylab as plb
import matplotlib.pyplot as plt
import matplotlib.axes as ax
import scipy as sp
from scipy.optimize import curve_fit
from matplotlib import rc
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
## for Palatino and other serif fonts use:
#rc('font',**{'family':'serif','serif':['Palatino']})
rc('text', usetex=True)
data = plb.loadtxt('data.csv',skiprows=2)
yp = data[:,4]
yr = data[:,5]
yl = data[:,6]
x = data[:,0]
def func(x,a,b,c):
return a*np.exp(-b*x) + c
popt, pcov = curve_fit(func, x, yl,maxfev=20000)
a = popt[0]
b = popt[1]
c = popt[2]
print a
print b
print c
print func(x,a,b,c)
xf = np.linspace(0,70,100)
yf = a*np.exp(-b*x) + c
plt.clf()
plt.plot(x,yf,'r-', label="Fitted Curve")
plt.plot(x,func(x,*popt))
plt.plot(x,yp,'bo',label='Polished')
plt.plot(x,yr,'ro',label='Rough')
plt.plot(x,yl,'go',label='Lacquered')
plt.legend()
plt.ylabel("Temperature (K)")
plt.xlabel("Time (min)")
plt.show()
最佳答案
非线性拟合很困难,诀窍在于您必须提供合理的初始猜测。
这是您的代码版本,它执行两种拟合,一种是近似初始猜测,另一种是默认初始猜测:
import pylab as plb
import matplotlib.pyplot as plt
import matplotlib.axes as ax
import scipy as sp
from scipy.optimize import curve_fit
from matplotlib import rc
import numpy as np
rc('font', **{'family':'sans-serif', 'sans-serif':['Helvetica']})
rc('text', usetex=True)
# Fake data
x = np.arange(0, 70., 2.)
yl = 300 + 63*np.exp(-x/35.)
def func(x, a, b, c):
return a*np.exp(-b*x) + c
popt, pcov = curve_fit(func, x, yl, p0=(40, 0.012, 250), maxfev=20000)
a, b, c = popt
print 'a=', a, 'b=', b, 'c=', c
print 'func=', func(x, a, b, c)
popt2, pcov2 = curve_fit(func, x, yl, p0=None, maxfev=20000)
a2, b2, c2 = popt2
print 'a2=', a2, 'b2=', b2, 'c2=', c2
print 'func=', func(x, a2, b2, c2)
xf = np.linspace(0, 70, 100)
yf = a*np.exp(-b*x) + c
plt.clf()
plt.plot(x, yf, 'r-', label="Fitted Curve")
plt.plot(x, func(x, *popt))
plt.plot(x, func(x, *popt2), 'b-', label='Fit w/o guess')
plt.plot(x, yl, 'go', label='Lacquered')
plt.legend()
plt.ylabel("Temperature (K)")
plt.xlabel("Time (min)")
plt.show()
这里是结果拟合:
如您所见,具有合理初始猜测的拟合效果非常好(红线)。如果您不提供初始猜测,scipy 会假设所有参数均为 1,并且效果不佳(蓝线)。
关于Python 指数衰减 curve_fit 给我一个线性拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22626118/
我正在尝试将数据放入 this file 中使用 Python 中 scipy 的 curve_fit。该文件包含以摄氏度和毫秒为单位的温度与时间的数据点。我将它们转换为开尔文和秒: thefile
我正在尝试将数据集拟合到这个庞大的方程中。我知道以前有人问过这个问题,但我不认为最初的猜测是我的问题,我也不能在拟合方程中添加更多项。 我的拟合方程。请注意,积分中的“u”与上面定义的 u 不同。 顺
我有一个包含多列的 pandas.DataFrame ,我想应用 curve_fit对他们每个人都有作用。我希望输出是一个数据框,其中具有适合列中数据的最佳值(目前,我对它们的协方差不感兴趣)。 df
我在这里定义了一个函数来返回任意数量的高斯分布的总和: import numpy from numpy import * import matplotlib.pyplot as plt from sc
我正在尝试将高斯拟合到光谱中,y 值大约为 10^(-19)。在我将整个数据乘以 10^(-19) 之前和之后,Curve_fit 给我的拟合结果都很差。附件是我的代码,它是一组相当简单的数据,只是值
我需要适应scipy.optimize.curve_fit一些看起来像图中点的数据。我使用函数 y(x) (见下面的 def)它给出了一个常量 y(x)=c对于 x p[0] '''
我是 Scipy.optimize curve_fit() 工具的新手。我试图找到一个最能模拟图中曲线(时间序列信号的一部分)的函数,但同时我只是将正弦曲线拟合到它并得到一条平坦的线。有人能发现我做错
the link of data from dropbox badfitting我尝试使用 curve_fit 来将数据与我在 python 中的预定义函数进行拟合,但结果远非完美。代码很简单,如下所
抱歉,我是 python 和堆栈流方面的新手。所以我无法发布图像。 我想用Python中的curve_fit函数进行幂律回归。但结果对我来说很奇怪。我用excel进一步检查了一下。看起来这两者差别很大
我正在尝试为拟合函数传递两个数组,该函数接受两个值。 数据文件: 第一栏:时间第 2 栏:温度第 3 栏:交易量第 4 栏:压力 0.000,0.946,4.668,0.981 0.050,0.946
对于我的学士论文,我正在研究一个项目,我想在其中对某些数据进行拟合。问题有点复杂,但我尽量减少这里的问题: 我们有三个数据点(可用的理论数据很少),但这些点高度相关。 使用 curve_fit 来拟合
Python 的 curve_fit计算具有单个自变量的函数的最佳拟合参数,但是有没有办法使用 curve_fit 或其他方法来拟合具有多个自变量的函数?例如: def func(x, y, a, b
本文实例讲述了Python图像处理之直线和曲线的拟合与绘制。分享给大家供大家参考,具体如下: 在数据处理和绘图中,我们通常会遇到直线或曲线的拟合问题,python中scipy模块的子模块optim
我正在尝试使用 curve_fit 来拟合一个简单的正弦波(甚至没有任何噪声)作为测试,然后再继续解决更复杂的问题。不幸的是,它甚至没有给出正确的答案。这是我的语法: x = linspace(0,1
我正在使用Scipy将数据适合一个函数。该函数为我提供了2个参数的值,在这种情况下, a 和 b 。我想使用绑定(bind)的参数来限制这些参数可以采用的值,每个参数都有自己的可接受值范围。 可接受的
我试图找到一条拟合我的数据的曲线,该曲线在视觉上似乎具有幂律分布。 我希望利用 scipy.optimize.curve_fit,但无论我尝试什么函数或数据规范化,我都会得到 RuntimeError
我尝试使用curve_fit拟合对数曲线,假设它遵循Y=a*ln(X)+b,但拟合的数据看起来仍然不正确. 现在我正在使用以下代码: from scipy.optimize import curve_
我正在尝试使用 scipy 的 curve_fit 拟合分布。我尝试拟合一个单分量指数函数,结果几乎是一条直线(见图)。我还尝试了两分量指数拟合,似乎效果很好。两个分量仅意味着方程的一部分使用不同的输
为了拟合双曲函数,我尝试使用以下代码: import numpy as np from scipy.optimize import curve_fit def hyperbola(x, s_1, s_
看起来它只适合第一个参数。 当我尝试使用 curve_fit 示例生成曲线时,这一切都很好,但当我使用自己的数据时却不然。 这是我的原始数据:https://pastebin.com/0hs2JVXL
我是一名优秀的程序员,十分优秀!