- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在网上搜索了我的问题的任何解决方案,但没有真正找到任何对我有帮助的东西。我的问题是我希望通过实现多处理来加速我的程序。 getSVJJPrice
函数相当快。但是,K 的大小约为 1000,这使得整个代码非常慢。因此我想知道是否有办法并行化 for
循环?代码如下。
def func2min(x,S,expiry,K,r,prices,curr):
bid = prices[:,0]
ask = prices[:,1]
C_omega = [0]*len(K)
w = [0]*len(K)
for ind, k in enumerate(K):
w[ind] = 1/np.abs(bid[ind] - ask[ind])
C_omega[ind] = getSVJJPrice(x[0],(x[1] + x[0]**2)/(2*x[2]),
x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],S[ind],k,r[ind],expiry[ind],
curr[ind])
right = np.sum(w * (np.subtract(C_omega, np.mean(prices,axis=1)))**2)
print right
#if right < 10:
# print '\n \n func = ', right
if math.isnan(right):
right = 1e12
return right
向调查此问题的任何人表示感谢!
最好的问候,
维克多
最佳答案
似乎 multiprocessing.Pool
可能适合您的情况,因为您正在遍历 K
中的每个元素,而 K
似乎就像它只是您代码中的一维数组。
基本上,您首先必须编写一个执行循环的函数,在我的示例 parallel_loop
中,然后您必须将问题拆分为单独的 block ,在这种情况下,您只需拆分 K
分成整数个nprocs
。
然后你可以使用pool.map
对每个 block 并行执行循环,结果将按照 block 的顺序收集回来,这与你原来的顺序相同K
因为我们没有重新排列任何东西,只是执行切片。然后,您只需将所有部分放回 w
和 C_omega
即可。
import numpy as np
from multiprocessing import Pool
def parallel_loop(K_chunk):
C_omega_chunk = np.empty(len(K_chunk)
w_chunk = np.empty(len(K_chunk))
for ind, k in enumerate(K_chunk)
w_chunk[ind] = 1/np.abs(bid[ind] - ask[ind])
C_omega_chunk[ind] = getSVJJPrice(x[0],(x[1] + x[0]**2)/(2*x[2]),
x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],S[ind],k,r[ind],expiry[ind],
curr[ind])
return (w_chunk, C_omega_chunk)
def func2min(x,S,expiry,K,r,prices,curr,nprocs):
bid = prices[:,0]
ask = prices[:,1]
K = np.array(K)
K_chunks = [K[n * len(K) // nprocs : (n + 1) * len(K) // nprocs] for n in range(nprocs)]
pool = Pool(processes=nprocs)
outputs = pool.map(parallel_loop, K_chunks)
w, C_omega = (np.concatenate(var) for var in zip(*outputs))
right = np.sum(w * (np.subtract(C_omega, np.mean(prices,axis=1)))**2)
print right
#if right < 10:
# print '\n \n func = ', right
if math.isnan(right):
right = 1e12
return right
因为我没有示例数据集,所以我不能确定上面的示例是否会按原样工作,但我认为它应该让您大致了解它是如何工作的。
关于python - NumPy 中的多处理,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26357295/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!