- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有多个时间序列,其中观测值作为行(按时间戳索引,n > 5000),变量作为列 (n=419)。我在时间序列中选择 N 百分比包含,然后调用 groupby 按年分组。我想要的是平均数、标准差,然后是每年的 95% 置信区间。我可以使用下面的代码很容易地获得 mean 和 std,但我需要调用一个单独的引导函数来获得每年和每个组的 95% CI:
这是对分组数据的概览:(2013 年有 86 行和 28 列,数据从 1970 年代开始)。我需要为每一年分组的每一列使用“bootsrap”。
for year, group in grouped:
print year
print group
2013
101 102 103 104 105 109
2013-04-02 3162.84 4136.02 77124.56 0.00 973.18 9731.81
2013-04-04 1033.81 5464.44 87283.30 3692.19 4282.94 295.37
2013-04-04 640.75 4164.87 131033.14 2563.00 1121.31 961.12
2013-04-10 246.87 4196.84 88380.57 4443.72 493.75 1234.37
2013-04-13 0.00 8300.49 114291.42 10003.16 212.83 6385.00
` 下面是我的 groupby 和 bootstrap 函数:
def gbY_20pct(nm): # sort into 20% timeseries inclusion, groupby year, take mean for year
nm1=nm.replace('0', np.nan) # remove 0 for logical count
coun=nm1.count(axis=0,numeric_only=True)
pct=(coun/len(nm1)) *100
pCount=pct.loc[pct >= 20]
nm1=nm.loc[:, pCount.index]
grouped = nm1.groupby(nm1.index.map(lambda x: x.year))
yrly=grouped.mean().astype(int)
yrly_coun=grouped.count().astype(int)
yrly_std=grouped.std().astype(int)
yrly_max=grouped.max().astype(int)
yrM1=yrly.join(yrly_std, lsuffix=' mean', rsuffix=' std', how='outer')
yrM2=yrly_max.join(yrly_coun, lsuffix=' max', rsuffix=' count', how='outer')
data=yrM1.join(yrM2, how='outer')
return data
`
import numpy as np
import numpy.random as npr
def bootstrap(data, num_samples, statistic, alpha):
"""Returns bootstrap estimate of 100.0*(1-alpha) CI for statistic."""
n = len(data)
idx = npr.randint(0, n, (num_samples, n))
samples = data[idx]
stat = np.sort(statistic(samples, 1))
return (stat[int((alpha/2.0)*num_samples)],
stat[int((1-alpha/2.0)*num_samples)])
为了测试代码,我是手动调用的(分组已经定义,函数还没有关闭)
from bootstrap import bootstrap
low, high = bootstrap(grouped, 100000, np.mean, 0.05)
Traceback (most recent call last):
File "<ipython-input-49-cd362c7908d1>", line 1, in <module>
low, high = bootstrap(grouped, 100000, np.mean, 0.05)
File "bootstrap.py", line 14, in bootstrap
File "C:\Users\ryan.morse\AppData\Local\Continuum\Anaconda\lib\site-packages\pandas\core\groupby.py", line 2991, in __getitem__
bad_keys = list(set(key).difference(self.obj.columns))
TypeError: unhashable type: 'numpy.ndarray'
问题来自 samples = data[idx]
行。我怀疑我需要比在 Bootstrap 中对数据字段使用“分组”更具体,但我不确定如何执行此操作。我需要将其作为 lambda 函数应用吗?或者也许用 for 循环?任何建议将不胜感激。
查看此页面:Pandas, compute many means with bootstrap confidence intervals for plotting 并尝试使用 scikit 引导函数 https://scikits.appspot.com/bootstrap 后,我测试了上面定义的函数,发现它的速度更快,结果相当。
编辑:
我在想这样的事情可能会奏效,但我仍然无法获得正确的语法:
groups=dict(list(grouped)) # this allows me to visualize the data and call values
for key, value in groups.iteritems():
low_i, high_i = bootstrap(groups.values(), 100000, np.mean, 0.05)
Traceback (most recent call last):
File "<ipython-input-36-7a8e261d656e>", line 2, in <module>
low_i, high_i=bootstrap(groups.values(), 10000, np.mean, 0.05)
File "<ipython-input-15-3ce4acd651dc>", line 7, in bootstrap
samples = data[idx]
TypeError: only integer arrays with one element can be converted to an index
我不确定如何为引导函数调用“数据”,以及如何遍历所有年份并保持所有年份的低和高(在同一数据帧中或在 2 个不同的数据帧中)。
任何帮助将不胜感激...
编辑 2 我可以同样轻松地使用 lambda 函数,但是我似乎无法获得正确的输出:
for col, group in nm1.groupby(nm1.index.year):
lo,hi=bootstrap(group,1000, np.mean, 0.05)
lo
Out[117]:
array([ 0.05713616, 0.30724739, 0.39592714, 0.55113183, 0.68623155,
0.69493923, 0.73513661, 0.84086099, 0.85882618, 0.86698939,
0.99399694, 1.04415927, 1.06553914, 1.11306698, 1.15344871,
1.27943327, 1.43275895, 1.81076036, 2.21647657, 2.37724615,
2.39004626, 2.43154256, 2.89940325, 3.02234954, 3.30773642,
3.96535146, 3.98973744, 4.38873853])
hi
Out[118]:
array([ 0.20584822, 0.38832222, 0.42140066, 0.48615202, 0.59686031,
0.67388397, 0.84269082, 0.84532503, 0.87078368, 0.9033272 ,
0.90765817, 0.97523759, 0.99186096, 1.01668772, 1.06681722,
1.18205259, 1.38524423, 1.79908484, 2.22314773, 2.33789105,
2.5521743 , 2.64242269, 2.88851233, 2.94387756, 3.44294791,
3.63914938, 3.99185026, 4.36450246])
如果这行得通,我将在 33 年的每一年的 28 列中的每一列都有 lo 和 hi,而我有一个有序的数字数组,这些数字似乎没有任何实际值(value)......这是一个yrly
的片段,其中包含每年的日志转换 groupby 方法,引导的 CI 应该接近这些数字,这与上面的数组不同。
101 102 103 104 105 109 135
1978 3.416638 3.701268 3.828442 2.911944 2.687491 2.076515 1.232035
1979 2.710939 3.172061 4.234109 1.666818 3.390646 1.355179 3.003813
1980 2.652617 2.375495 3.316380 1.101594 2.220028 1.195449 1.998862
1981 3.363424 3.485015 3.441784 2.242618 2.256745 1.719140 1.150454
1982 2.791865 2.019883 4.093960 1.038226 2.106627 1.180935 2.456144
1983 2.597307 2.213450 4.458691 1.274352 2.820910 1.705242 3.452762
1984 3.042197 4.023952 3.816964 2.499883 2.445258 1.769485 1.690180
1985 2.669850 2.162608 3.600731 1.400102 1.845218 1.234235 2.517108
1986 3.597527 2.763436 2.790792 1.410343 2.116275 1.042812 1.528532
最佳答案
毕竟,我得出的答案是:
import scipy.stats
ci = grouped.aggregate(lambda x: scipy.stats.sem(x, ddof=1) * 1.96) #use mean +(-) ci to get 95% conf interval
事实证明,我真的不需要引导数据,所以我可以根据均值的标准误差乘以正态分布的 0.975 分位数来估计 95% 的置信区间,假设数据是正态分布的分布式(但这是另一个问题...)。
101 102 103 104 105 109 135
1978 0.230630 0.191651 0.168648 0.282588 0.237939 0.288924 0.257476
1979 0.192579 0.147305 0.120740 0.225826 0.145646 0.266530 0.199315
1980 0.189258 0.195263 0.182756 0.166479 0.166401 0.172550 0.189483
1981 0.200727 0.169663 0.184478 0.232392 0.198591 0.230457 0.194084
1982 0.271740 0.267881 0.164450 0.248718 0.246636 0.260973 0.253430
1983 0.253495 0.279114 0.116744 0.266888 0.236672 0.317195 0.155766
关于python - 在 Pandas 中的 groupby 对象上引导,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26429322/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!