gpt4 book ai didi

python - 什么是 Python 中标记化数据的有效数据结构?

转载 作者:太空宇宙 更新时间:2023-11-04 03:36:48 26 4
gpt4 key购买 nike

我有一个 pandas 数据框,其中有一列包含一些文本。我想修改数据框,以便所有行中出现的每个不同单词都有一列,还有一个 bool 值指示该单词是否出现在我的文本列中该特定行的值中。

我有一些代码可以做到这一点:

from pandas import *

a = read_table('file.tsv', sep='\t', index_col=False)
b = DataFrame(a['text'].str.split().tolist()).stack().value_counts()

for i in b.index:
a[i] = Series(numpy.zeros(len(a.index)))

for i in b.index:
for j in a.index:
if i in str.split(a['text'][j]:
a[i][j] = 1

但是,我的数据集非常大(200,000 行和大约 70,000 个唯一单词)。有没有一种更有效的方法可以做到这一点而又不会损坏我的计算机?

最佳答案

我建议使用 sklearn,特别是 CountVectorizer

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
vect= CountVectorizer(binary =True)



df= pd.DataFrame({'text':['cat on the cat','angel eyes has','blue red angel','one two blue','blue whales eat','hot tin roof','angel eyes has','have a cat'],'labels':\
[1,0,1,1,0,0,1,1]})




X = vect.fit_transform(df['text'].values)
y = df['labels'].values
X

<8x16 sparse matrix of type '<type 'numpy.int64'>'
with 23 stored elements in Compressed Sparse Row format>

这将返回一个稀疏矩阵,其中m 是来自df 的行,n 是单词集.稀疏格式更适合在矩阵的大多数元素为 0 的情况下节省内存。将其保留为稀疏似乎是可行的方法,许多“sklearn”算法都采用稀疏输入。

您可以从 X 创建一个数据框(如果确实有必要,但它会很大):

word_counts =pd.DataFrame(X.todense(),columns = vect.get_feature_names())

关于python - 什么是 Python 中标记化数据的有效数据结构?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28667154/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com