- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有这个 pandas DataFrame:
>>> print(df)
Channel 0 1 2 3 4 5 6 7
Sample
7d 3.82 4.10 3.86 3.86 3.95 3.65 3.43 3.63
12d 2.97 4.32 3.50 3.58 3.22 3.37 3.58 3.78
17d 4.01 4.04 4.10 3.43 3.76 3.26 3.35 3.48
DO 3.07 3.58 3.14 3.22 3.11 3.09 3.16 3.16
我想做一个类似这样的情节(代码是sns.swarmplot(df)
):
但颜色不应按 channel (即 DataFrame 列)设置,而应按样本(即 DataFrame 行)设置。所以 x 轴上的每个“类别”将有 4 种颜色,对应于第 7d、12d、17d 和 DO 行。
有没有一种简单的方法可以在 seaborn 中实现这一点?
编辑:我应该补充一点,我尝试使用 hue
关键字,但它说它还需要使用 x
和 y
关键字。根据this example似乎我需要创建一个新的 DataFrame,其中一列中包含所有数值,另外两列包含样本和 channel 信息。然后我可以将绘图称为 sns.swarmplot(x='Channel', y='values', hue='Sample')
。有没有不涉及创建额外的临时 DataFrame 的更直接的方法?
EDIT2:按照@BrenBarn 的建议,我最终创建了一个新的“整洁”DataFrame:
dd = []
for sa in df.index:
print(sa)
d = pd.DataFrame(df.loc[sa]).reset_index()
d.columns = ['Channel', 'Leakage']
d['Sample'] = sa
dd.append(d)
ddf = pd.concat(dd)
然后绘制数据:
sns.swarmplot(x='Channel', y='Leakage', hue='Sample', data=ddf)
这给出了我预期的情节:
我希望有办法告诉 seaborn 使用原始的“二维表”格式来绘制这对于这种数据来说更加紧凑和自然。如果可能的话,我会接受答案;)。
最佳答案
你基本上已经在编辑中回答了你的问题,但你可能想看看pd.melt
或 pd.stack
作为创建新的整洁 DataFrame 的更简单方法。
例如
s=df.stack()
s.name='values'
df_tidy=s.reset_index()
sns.stripplot(data=df_tidy,hue='sample',x='Channel',y='values')
或
df_tidy=pd.melt(df.reset_index(),id_vars=['sample'],value_vars=df.columns.tolist(),value_name='values')
sns.stripplot(data=df_tidy,hue='sample',x='Channel',y='values')
关于python - 具有来自 DataFrame 行的色调的 Seaborn 分类图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37490771/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!