- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在以一种非常标准的方式在 Seaborn 中创建我的数据的直方图,即:
rc = {'font.size': 32, 'axes.labelsize': 28.5, 'legend.fontsize': 32.0,
'axes.titlesize': 32, 'xtick.labelsize': 31, 'ytick.labelsize': 12}
sns.set(style="ticks", color_codes=True, rc = rc)
plt.figure(figsize=(25,20),dpi=300)
ax = sns.distplot(synData['SYNERGY_SCORE'])
print (np.mean(synData['SYNERGY_SCORE']), np.std(synData['SYNERGY_SCORE']))
# ax = sns.boxplot(synData['SYNERGY_SCORE'], orient = 'h')
ax.set(xlabel = 'Synergy Score', ylabel = 'Frequency', title = 'Aggregate Synergy Score Distribution')
这会产生以下输出:
我还想在同一张图上可视化此数据集的平均值 + 标准差,理想情况下是在 x 轴(或 x 轴正上方)上有一个平均值点和显示标准的缺口误差条偏差。另一种选择是包含 x 轴的箱线图。我尝试只添加注释掉的行 (sns.boxplot()),但它看起来非常丑陋,根本不是我想要的。有什么建议吗?
最佳答案
箱形图是在分类轴上绘制的,不会与直方图的密度轴很好地共存,但可以使用双 x 轴图来做到这一点:
import numpy as np
import seaborn as sns
x = np.random.randn(300)
ax = sns.distplot(x)
ax2 = ax.twinx()
sns.boxplot(x=x, ax=ax2)
ax2.set(ylim=(-.5, 10))
关于python - Seaborn:在直方图上叠加箱线图或均值误差条,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39200165/
我想获取每一行某些列的平均值。 我有此数据: w=c(5,6,7,8) x=c(1,2,3,4) y=c(1,2,3) length(y)=4 z=data.frame(w,x,y) 哪个返回:
类似于Numpy mean with condition我的问题将其扩展到对矩阵进行操作:计算矩阵 rdat 的行均值,跳过某些单元格 - 在本例中我使用 0 作为要跳过的单元格 - 就好像这些值从一
我有一个数据集,其中的列标题为产品名称、品牌、评级(1:5)、评论文本、评论有用性。我需要的是提出一个使用评论的推荐算法。我这里必须使用 python 进行编码。数据集采用.csv 格式。 为了识别数
我在 R^3 中有 n 个点,我想用 k 个椭球体或圆柱体覆盖它们(我不在乎;以更容易的为准)。我想大约最小化卷的并集。假设 n 是数万,k 是少数。开发时间(即简单性)比运行时更重要。 显然我可以运
我创建了一个计算均值、中位数和方差的程序。该程序最多接受 500 个输入。当有 500 个输入(我的数组的最大大小)时,我的所有方法都能完美运行。当输入较少时,只有“平均值”计算器起作用。这是整个程序
我已经完成了距离的计算并存储在推力 vector 中,例如,我有 2 个质心和 5 个数据点,我计算距离的方法是,对于每个质心,我首先计算 5 个数据点的距离并存储在阵列,然后与距离一维阵列中的另一个
下面的代码适用于每一列的总数,但我想计算出每个物种的平均值。 # Read data file into array data = numpy.genfromtxt('data/iris.csv',
我有一个独特的要求,我需要两个数据帧的公共(public)列(每行)的平均值。 我想不出这样做的 pythonic 方式。我知道我可以遍历两个数据框并找到公共(public)列,然后获取键匹配的行的平
我把它扔在那里,希望有人会尝试过这种荒谬的事情。我的目标是获取输入图像,并根据每个像素周围小窗口的标准差对其进行分割。基本上,这在数学上应该类似于高斯或盒式过滤器,因为它将应用于编译时(甚至运行时)用
有没有一种方法可以对函数进行向量化处理,使输出成为均值数组,其中每个均值代表输入数组的 0 索引值的均值?循环这个非常简单,但我正在努力尽可能高效。例如0 = 均值(0),1 = 均值(0-1),N
我正在尝试生成均值为 1 的指数分布随机数。我知道如何获取具有均值和标准差的正态分布随机数。我们可以通过normal(mean, standard_deviation)得到它,但是我不知道如何得到指数
我遇到了一段 Python 代码,它的内容类似于以下内容: a = np.array([1,2,3,4,5,6,7]) a array([1, 2, 3, 4, 5, 6, 7]) np.mean(a
我有两个数组。 x 是独立变量,counts 是 x 出现的次数,就像直方图一样。我知道我可以通过定义一个函数来计算平均值: def mean(x,counts): return np.sum
我有在纯 python 中计算平均速度的算法: speed = [...] avg_speed = 0.0 speed_count = 0 for i in speed: if i > 0:
我正在尝试计算扩展窗口的平均值,但是数据结构使得之前的答案至少缺少一点所需的内容(最接近的是:link)。 我的数据看起来像这样: Company TimePeriod IndividualID
我正在尝试实现 Kmeans python中的算法将使用cosine distance而不是欧几里得距离作为距离度量。 我知道使用不同的距离函数可能是致命的,应该小心使用。使用余弦距离作为度量迫使我改
有谁知道自组织映射 (SOM) 与 k 均值相比效果如何?我相信通常在颜色空间(例如 RGB)中,SOM 是将颜色聚类在一起的更好方法,因为视觉上不同的颜色之间的颜色空间存在重叠( http://ww
注意:我希望能得到更多有关如何处理和提出此类解决方案的指南,而不是解决方案本身。 我的系统中有一个非常关键的功能,它在特定上下文中显示为排名第一的分析热点。它处于 k-means 迭代的中间(已经是多
我有一个 pandas 数据框,看起来像这样: 给定行中的每个值要么是相同的数字,要么是 NaN。我想计算数据框中所有两列组合的平均值、中位数和获取计数,其中两列都不是 NaN。 例如,上述数据帧的结
任何人都知道如何调整简单的 K 均值算法来处理 this form 的数据集. 最佳答案 在仍然使用 k-means 的同时处理该形式的数据的最直接方法是使用 k-means 的内核化版本。 JSAT
我是一名优秀的程序员,十分优秀!