- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我必须在 SODE 系统上运行一些模拟。因为我需要使用随机图,所以我认为使用 python 生成图形的相邻矩阵然后使用 C 进行模拟是个好主意。所以我转向了 cython。
我按照 cython documentation 的提示编写了代码尽可能提高它的速度。但是知道我真的不知道我的代码好不好。我也运行 cython toast.pyx -a
,但我不明白这些问题。
np.array
或 double
在我的代码上定义 bruit
?请注意,我将比较矩阵的元素(0 或 1)以确定是否求和。结果将是一个矩阵 NxT,其中 N 是系统的维度,T 是我想用于模拟的时间。double[:]
的文档?double
声明一个向量?但我让我的代码替我说话:
from __future__ import division
import scipy.stats as stat
import numpy as np
import networkx as net
#C part
from libc.math cimport sin
from libc.math cimport sqrt
#cimport cython
cimport numpy as np
cimport cython
cdef double tau = 2*np.pi #http://tauday.com/
#graph
def graph(int N, double p):
"""
It generates an adjacency matrix for a Erdos-Renyi graph G{N,p} (by default not directed).
Note that this is an O(n^2) algorithm and it gives an array, not a (sparse) matrix.
Remark: fast_gnp_random_graph(n, p, seed=None, directed=False) is O(n+m), where m is the expected number of edges m=p*n*(n-1)/2.
Arguments:
N : number of edges
p : probability for edge creation
"""
G=net.gnp_random_graph(N, p, seed=None, directed=False)
G=net.adjacency_matrix(G, nodelist=None, weight='weight')
G=G.toarray()
return G
@cython.boundscheck(False)
@cython.wraparound(False)
#simulations
def simul(int N, double H, G, np.ndarray W, np.ndarray X, double d, double eps, double T, double dt, int kt_max):
"""
For details view the general description of the package.
Argumets:
N : population size
H : coupling strenght complete case
G : adjiacenty matrix
W : disorder
X : initial condition
d : diffusion term
eps : 0 for the reversibily case, 1 for the non-rev case
T : time of the simulation
dt : increment time steps
kt_max = (int) T/dt
"""
cdef int kt
#kt_max = T/dt to check
cdef np.ndarray xt = np.zeros([N,kt_max], dtype=np.float64)
cdef double S1 = 0.0
cdef double Stilde1 = 0.0
cdef double xtmp, xtilde, x_diff, xi
cdef np.ndarray bruit = d*sqrt(dt)*stat.norm.rvs(N)
cdef int i, j, k
for i in range(N): #setting initial conditions
xt[i][0]=X[i]
for kt in range(kt_max-1):
for i in range(N):
S1 = 0.0
Stilde1= 0.0
xi = xt[i][kt]
for j in range(N): #computation of the sum with the adjiacenty matrix
if G[i][j]==1:
x_diff = xt[j][kt] - xi
S2 = S2 + sin(x_diff)
xtilde = xi + (eps*(W[i]) + (H/N)*S1)*dt + bruit[i]
for j in range(N):
if G[i][j]==1:
x_diff = xt[j][kt] - xtilde
Stilde2 = Stilde2 + sin(x_diff)
#computation of xt[i]
xtmp = xi + (eps*(W[i]) + (H/N)*(S1+Stilde1)*0.5)*dt + bruit
xt[i][kt+1] = xtmp%tau
return xt
非常感谢!
我改变了变量定义的顺序,np.array
到 double
和 xt[i][j]
到 xt[i,j]
和 long long
的矩阵。代码现在相当快,html 文件上的黄色部分就在声明周围。谢谢!
from __future__ import division
import scipy.stats as stat
import numpy as np
import networkx as net
#C part
from libc.math cimport sin
from libc.math cimport sqrt
#cimport cython
cimport numpy as np
cimport cython
cdef double tau = 2*np.pi #http://tauday.com/
#graph
def graph(int N, double p):
"""
It generates an adjacency matrix for a Erdos-Renyi graph G{N,p} (by default not directed).
Note that this is an O(n^2) algorithm and it gives an array, not a (sparse) matrix.
Remark: fast_gnp_random_graph(n, p, seed=None, directed=False) is O(n+m), where m is the expected number of edges m=p*n*(n-1)/2.
Arguments:
N : number of edges
p : probability for edge creation
"""
G=net.gnp_random_graph(N, p, seed=None, directed=False)
G=net.adjacency_matrix(G, nodelist=None, weight='weight')
G=G.toarray()
return G
@cython.boundscheck(False)
@cython.wraparound(False)
#simulations
def simul(int N, double H, long long [:, ::1] G, double[:] W, double[:] X, double d, double eps, double T, double dt, int kt_max):
"""
For details view the general description of the package.
Argumets:
N : population size
H : coupling strenght complete case
G : adjiacenty matrix
W : disorder
X : initial condition
d : diffusion term
eps : 0 for the reversibily case, 1 for the non-rev case
T : time of the simulation
dt : increment time steps
kt_max = (int) T/dt
"""
cdef int kt
#kt_max = T/dt to check
cdef double S1 = 0.0
cdef double Stilde1 = 0.0
cdef double xtmp, xtilde, x_diff
cdef double[:] bruit = d*sqrt(dt)*np.random.standard_normal(N)
cdef double[:, ::1] xt = np.zeros((N, kt_max), dtype=np.float64)
cdef double[:, ::1] yt = np.zeros((N, kt_max), dtype=np.float64)
cdef int i, j, k
for i in range(N): #setting initial conditions
xt[i,0]=X[i]
for kt in range(kt_max-1):
for i in range(N):
S1 = 0.0
Stilde1= 0.0
for j in range(N): #computation of the sum with the adjiacenty matrix
if G[i,j]==1:
x_diff = xt[j,kt] - xt[i,kt]
S1 = S1 + sin(x_diff)
xtilde = xt[i,kt] + (eps*(W[i]) + (H/N)*S1)*dt + bruit[i]
for j in range(N):
if G[i,j]==1:
x_diff = xt[j,kt] - xtilde
Stilde1 = Stilde1 + sin(x_diff)
#computation of xt[i]
xtmp = xt[i,kt] + (eps*(W[i]) + (H/N)*(S1+Stilde1)*0.5)*dt + bruit[i]
xt[i,kt+1] = xtmp%tau
return xt
最佳答案
cython -a
对 cython 源代码进行颜色编码。如果您单击一行,它会显示相应的 C 源代码。根据经验,您不希望内循环中有任何黄色内容。
您的代码中会出现一些问题:
x[j][i]
在每次调用时为 x[j]
创建一个临时数组,因此使用 x[j, i]
代替。cdef ndarray x
更好地提供维度和 dtype (cdef ndarray[ndim=2, dtype=float]
) 或 --- 最好 ---使用类型化的内存 View 语法:cdef double[:, :] x
。例如,而不是
cdef np.ndarray xt = np.zeros([N,kt_max], dtype=np.float64)
更好地使用
cdef double[:, ::1] xt = np.zeros((N, kt_max), dtype=np.float64)
double[:,::1]
并迭代数组,最后一个索引变化最快。 编辑:参见http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html对于typed memoryview语法double[:,::1]
等
关于python - 改进cython代码的高效矩阵向量结构,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39789262/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!