gpt4 book ai didi

python - 改进cython代码的高效矩阵向量结构

转载 作者:太空宇宙 更新时间:2023-11-04 03:04:54 25 4
gpt4 key购买 nike

我必须在 SODE 系统上运行一些模拟。因为我需要使用随机图,所以我认为使用 python 生成图形的相邻矩阵然后使用 C 进行模拟是个好主意。所以我转向了 cython。

我按照 cython documentation 的提示编写了代码尽可能提高它的速度。但是知道我真的不知道我的代码好不好。我也运行 cython toast.pyx -a,但我不明白这些问题。

  • 在 cython 中用于向量和矩阵的最佳结构是什么?例如,我应该如何使用 np.arraydouble 在我的代码上定义 bruit?请注意,我将比较矩阵的元素(0 或 1)以确定是否求和。结果将是一个矩阵 NxT,其中 N 是系统的维度,T 是我想用于模拟的时间。
  • 在哪里可以找到 double[:] 的文档?
  • 如何在函数的输入中声明向量和矩阵(下面是 G、W 和 X)?我如何使用 double 声明一个向量?

但我让我的代码替我说话:

from __future__ import division
import scipy.stats as stat
import numpy as np
import networkx as net

#C part
from libc.math cimport sin
from libc.math cimport sqrt

#cimport cython
cimport numpy as np
cimport cython
cdef double tau = 2*np.pi #http://tauday.com/

#graph
def graph(int N, double p):
"""
It generates an adjacency matrix for a Erdos-Renyi graph G{N,p} (by default not directed).
Note that this is an O(n^2) algorithm and it gives an array, not a (sparse) matrix.

Remark: fast_gnp_random_graph(n, p, seed=None, directed=False) is O(n+m), where m is the expected number of edges m=p*n*(n-1)/2.
Arguments:
N : number of edges
p : probability for edge creation
"""
G=net.gnp_random_graph(N, p, seed=None, directed=False)
G=net.adjacency_matrix(G, nodelist=None, weight='weight')
G=G.toarray()
return G


@cython.boundscheck(False)
@cython.wraparound(False)
#simulations
def simul(int N, double H, G, np.ndarray W, np.ndarray X, double d, double eps, double T, double dt, int kt_max):
"""
For details view the general description of the package.
Argumets:
N : population size
H : coupling strenght complete case
G : adjiacenty matrix
W : disorder
X : initial condition
d : diffusion term
eps : 0 for the reversibily case, 1 for the non-rev case
T : time of the simulation
dt : increment time steps
kt_max = (int) T/dt
"""
cdef int kt
#kt_max = T/dt to check
cdef np.ndarray xt = np.zeros([N,kt_max], dtype=np.float64)
cdef double S1 = 0.0
cdef double Stilde1 = 0.0
cdef double xtmp, xtilde, x_diff, xi

cdef np.ndarray bruit = d*sqrt(dt)*stat.norm.rvs(N)
cdef int i, j, k

for i in range(N): #setting initial conditions
xt[i][0]=X[i]

for kt in range(kt_max-1):
for i in range(N):
S1 = 0.0
Stilde1= 0.0
xi = xt[i][kt]

for j in range(N): #computation of the sum with the adjiacenty matrix
if G[i][j]==1:
x_diff = xt[j][kt] - xi
S2 = S2 + sin(x_diff)

xtilde = xi + (eps*(W[i]) + (H/N)*S1)*dt + bruit[i]

for j in range(N):
if G[i][j]==1:
x_diff = xt[j][kt] - xtilde
Stilde2 = Stilde2 + sin(x_diff)

#computation of xt[i]
xtmp = xi + (eps*(W[i]) + (H/N)*(S1+Stilde1)*0.5)*dt + bruit
xt[i][kt+1] = xtmp%tau

return xt

非常感谢!

更新

我改变了变量定义的顺序,np.arraydoublext[i][j] xt[i,j]long long 的矩阵。代码现在相当快,html 文件上的黄色部分就在声明周围。谢谢!

from __future__ import division
import scipy.stats as stat
import numpy as np
import networkx as net

#C part
from libc.math cimport sin
from libc.math cimport sqrt

#cimport cython
cimport numpy as np
cimport cython
cdef double tau = 2*np.pi #http://tauday.com/

#graph
def graph(int N, double p):
"""
It generates an adjacency matrix for a Erdos-Renyi graph G{N,p} (by default not directed).
Note that this is an O(n^2) algorithm and it gives an array, not a (sparse) matrix.

Remark: fast_gnp_random_graph(n, p, seed=None, directed=False) is O(n+m), where m is the expected number of edges m=p*n*(n-1)/2.
Arguments:
N : number of edges
p : probability for edge creation
"""
G=net.gnp_random_graph(N, p, seed=None, directed=False)
G=net.adjacency_matrix(G, nodelist=None, weight='weight')
G=G.toarray()
return G


@cython.boundscheck(False)
@cython.wraparound(False)
#simulations
def simul(int N, double H, long long [:, ::1] G, double[:] W, double[:] X, double d, double eps, double T, double dt, int kt_max):
"""
For details view the general description of the package.
Argumets:
N : population size
H : coupling strenght complete case
G : adjiacenty matrix
W : disorder
X : initial condition
d : diffusion term
eps : 0 for the reversibily case, 1 for the non-rev case
T : time of the simulation
dt : increment time steps
kt_max = (int) T/dt
"""
cdef int kt
#kt_max = T/dt to check
cdef double S1 = 0.0
cdef double Stilde1 = 0.0
cdef double xtmp, xtilde, x_diff

cdef double[:] bruit = d*sqrt(dt)*np.random.standard_normal(N)

cdef double[:, ::1] xt = np.zeros((N, kt_max), dtype=np.float64)
cdef double[:, ::1] yt = np.zeros((N, kt_max), dtype=np.float64)
cdef int i, j, k

for i in range(N): #setting initial conditions
xt[i,0]=X[i]

for kt in range(kt_max-1):
for i in range(N):
S1 = 0.0
Stilde1= 0.0

for j in range(N): #computation of the sum with the adjiacenty matrix
if G[i,j]==1:
x_diff = xt[j,kt] - xt[i,kt]
S1 = S1 + sin(x_diff)

xtilde = xt[i,kt] + (eps*(W[i]) + (H/N)*S1)*dt + bruit[i]

for j in range(N):
if G[i,j]==1:
x_diff = xt[j,kt] - xtilde
Stilde1 = Stilde1 + sin(x_diff)

#computation of xt[i]
xtmp = xt[i,kt] + (eps*(W[i]) + (H/N)*(S1+Stilde1)*0.5)*dt + bruit[i]
xt[i,kt+1] = xtmp%tau

return xt

最佳答案

cython -a 对 cython 源代码进行颜色编码。如果您单击一行,它会显示相应的 C 源代码。根据经验,您不希望内循环中有任何黄色内容。

您的代码中会出现一些问题:

  • x[j][i] 在每次调用时为 x[j] 创建一个临时数组,因此使用 x[j, i] 代替。
  • 而不是 cdef ndarray x 更好地提供维度和 dtype (cdef ndarray[ndim=2, dtype=float]) 或 --- 最好 ---使用类型化的内存 View 语法:cdef double[:, :] x

例如,而不是

cdef np.ndarray xt = np.zeros([N,kt_max], dtype=np.float64)

更好地使用

cdef double[:, ::1] xt = np.zeros((N, kt_max), dtype=np.float64)
  • 确保您以缓存友好模式访问内存。例如,确保您的数组按 C 顺序排列(最后一个维度变化最快),将内存 View 声明为 double[:,::1] 并迭代数组,最后一个索引变化最快。

编辑:参见http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html对于typed memoryview语法double[:,::1]

关于python - 改进cython代码的高效矩阵向量结构,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39789262/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com