- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用 scipy basinhopping 优化函数的输出算法。
def acceptance_criteria(self,**kwargs):
print "kwargs "
print kwargs
x = kwargs["x_new"]
beta = x[0]
alpha = [x[1],x[2],x[3],x[4],x[5],x[6]]
print x
inputnow= raw_input()
beta_gamma_pass = beta != self.gamma
beta_zero_pass = beta >= 0.0
alpha1_pass = alpha[0] > 0.0
alpha2_pass = alpha[1] > 0.0
alpha3_pass = alpha[2] > 0.0
alpha4_pass= alpha[3] > 0.0
alpha5_pass= alpha[4] > 0.0
alpha6_pass= alpha[5] > 0.0
return beta_gamma_pass,beta_zero_pass,alpha1_pass,alpha2_pass,alpha3_pass,alpha4_pass,alpha5_pass,alpha6_pass
def variational_calculation(self):
minimizer_kwargs = {"method": "BFGS"}
initial_paramater_guesses = [2,1.0,1.0/2.0,1.0/3.0,1.0/4.0,1.0/5.0,1.0/6.0]
ret = basinhopping(self.Calculate, initial_paramater_guesses, minimizer_kwargs=minimizer_kwargs, niter=200, accept_test=self.acceptance_criteria)
我在计算函数中遇到了 Nans 和 infs 的问题。这是由于使用了无效的参数值。我试图通过使用验收标准来防止这种情况。但是 basinhopping 例程不会调用 accept_test 函数。因此,标准仍未实现。
谁能帮我解释为什么 basinhopping 没有调用 accept_test 函数?
谢谢
编辑:回应@sascha 的评论,函数中有参数的分数次幂和 1/参数项。在这种情况下,不限制允许参数值的范围会给出 complex 和 inf 值。这实际上是一个特征值问题,我试图在其中最小化一组 18*18 矩阵的特征值的迹。矩阵元素以复杂的方式依赖于 7 个参数,具有数十个非线性项。
我以前从未研究过比多项式回归更复杂的东西,所以我根本不熟悉这些算法或它们的适用性。但是,只要避免参数值靠近极点,我试图最小化的函数就是平滑的;由 1/parameter 和 1/(paramter^n -constant) 项引起。
编辑2:问题澄清这里的问题与basinhopping算法的适用性无关。
就是为什么它的具体实现,在2.7版本的python和scipy中,没有调用accept_test函数?
最佳答案
我不能说为什么你的例子不起作用,但这是一个类似但最小的例子,它确实调用了 accept_test,也许你可以找出区别
import scipy
import numpy as np
from scipy.optimize import basinhopping
class MyClass:
def Calculate(self, x):
return np.dot(x, x)
def acceptance_criteria(self, **kwargs):
print("in accept test")
return True
def run(self):
minimizer_kwargs = {"method": "BFGS"}
initial_paramater_guesses = [2,1.0,1.0/2.0,1.0/3.0,1.0/4.0,1.0/5.0,1.0/6.0]
ret = basinhopping(self.Calculate,
initial_paramater_guesses,
minimizer_kwargs=minimizer_kwargs,
niter=200,
accept_test=self.acceptance_criteria)
my_class = MyClass()
my_class = my_class.run()
关于python - scipy.optimize.basinhopping 不调用 accept_test。为什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39963601/
我正在尝试运行以下代码片段,以使曲线适合一些经验数据,但在Julia Optim.jl包中,optimize()方法一直存在问题。我正在使用Julia v1.1.0,并安装了所有正确的软件包。我不断收
时不时你会听到一些故事,这些故事旨在说明某人在某件事上有多擅长,有时你会听到这个人如何热衷于代码优化,以至于他优化了他的延迟循环。 因为这听起来确实是一件奇怪的事情,因为启动“计时器中断”而不是优化的
我正在尝试使用 z3py 作为优化求解器来最大化从一张纸上切出的长方体的体积。 python API 提供了 Optimize() 对象,但使用它似乎不可靠,给我的解决方案显然不准确。 我尝试使用 h
我今天接受了采访。这个问题是为了优化下面的代码。如果我们将在 for 循环之后看到下面的代码,那么下面有四个“if-else”步骤。所以,面试官要求我将其优化为 3 if-else 行。我已经尝试了很
我使用BFGS算法使用Optim.jl库来最小化Julia中的函数。今天,我问了一个关于同一个库的question,但是为了避免混淆,我决定将它分成两部分。 我还想对优化后的负逆黑森州进行估算,以进行
在 haskell 平台中实现许多功能时有一个非常常见的模式让我很困扰,但我找不到解释。这是关于使用嵌套函数进行优化。 where 子句中的嵌套函数旨在进行尾递归的原因对我来说非常清楚(如 lengt
我目前正试图利用 Julia 中的 Optim 包来最小化成本函数。成本函数是 L2 正则化逻辑回归的成本函数。其构造如下; using Optim function regularised_cost
我正在使用 GEKKO 来解决非线性规划问题。我的目标是将 GEKKO 性能与替代方案进行比较,因此我想确保我从 GEKKO 中获得其所能提供的最佳性能。 有n个二元变量,每个变量都分配有一个权
我可以手动更改参数C和epsilon以获得优化结果,但我发现有PSO(或任何其他优化算法)对SVM进行参数优化。没有算法。什么意思:PSO如何自动优化SVM参数?我读了几篇关于这个主题的论文,但我仍然
我正在使用 scipy.optimize.fmin_l_bfgs_b 来解决高斯混合问题。混合分布的均值通过回归建模,其权重必须使用 EM 算法进行优化。 sigma_sp_new, func_val
当你有一个 Option ,编译器知道 NULL永远不是 &T 的可能值, 和 encodes the None variant as NULL instead .这样可以节省空间: use std:
当你有一个 Option ,编译器知道 NULL永远不是 &T 的可能值, 和 encodes the None variant as NULL instead .这样可以节省空间: use std:
以下是说明我的问题的独立示例。 using Optim χI = 3 ψI = 0.5 ϕI(z) = z^-ψI λ = 1.0532733 V0 = 0.8522423425 zE = 0.598
根据MySQL文档关于Optimizing Queries With Explain : * ALL: A full table scan is done for each combination o
我无法预览我的 Google 优化工具体验。 Google 优化抛出以下错误: 最佳答案 我也经常遇到这种情况。 Google 给出的建议是错误的。清除 cookie 并重新启动浏览器并不能解决问题。
我一直在尝试使用 optim()或 optimize()函数来最小化绝对预测误差的总和。 我有 2 个向量,每个长度为 28,1 个包含预测数据,另一个包含过去 28 天的实际数据。 fcst和 ac
在我对各种编译器书籍和网站的独立研究中,我了解到编译器可以优化正在编译的代码的许多不同方法,但我很难弄清楚每种优化会带来多少好处给予。 大多数编译器编写者如何决定首先实现哪些优化?或者哪些优化值得付出
我在我的项目中使用 System.Web.Optimizations BundleConfig。我在我的网站上使用的特定 jQuery 插件遇到了问题。如果我将文件添加到我的 ScriptBundle
我收到这个错误 Error: webpack.optimize.CommonsChunkPlugin has been removed, please use config.optimization.
scipy的optimize.fmin和optimize.leastsq有什么区别?它们似乎在 this example page 中以几乎相同的方式使用.我能看到的唯一区别是 leastsq 实际上
我是一名优秀的程序员,十分优秀!