gpt4 book ai didi

python - 从 tensorflow 中获取预测结果

转载 作者:太空宇宙 更新时间:2023-11-04 03:03:16 25 4
gpt4 key购买 nike

我正在使用以下代码做我的第一个 tensorflow 示例。

train_x,train_y,test_x,test_y=create_feature_sets_and_labels('pro.txt','neg.txt')
n_nodes_hl1 = 1500
n_nodes_hl2 = 1500
n_nodes_hl3 = 1500

n_classes = 2
batch_size = 100
hm_epochs = 7

x = tf.placeholder('float')
y = tf.placeholder('float')

hidden_1_layer = {'f_fum':n_nodes_hl1,
'weight':tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'f_fum':n_nodes_hl2,
'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'f_fum':n_nodes_hl3,
'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'f_fum':None,
'weight':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'bias':tf.Variable(tf.random_normal([n_classes])),}


def neural_network_model(data):

l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)

output = tf.matmul(l3,output_layer['weight']) + output_layer['bias']

return output

def train_neural_network(x):
prediction = neural_network_model(x)

cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())

for epoch in range(hm_epochs):
epoch_loss = 0
i=0
while i < len(train_x):
start = i
end = i+batch_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])

_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
epoch_loss += c
i+=batch_size

print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:',epoch_l$ correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print(y)
print('Accuracy:',accuracy.eval({x:test_x, y:test_y}))


train_neural_network(x)

它给我测试数据的准确性。我想要的是给我的训练模型输入一个句子,它会返回我预测的标签。

我试着按照这个 example 的形式

#with same length as lexicon               
input = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.$
output = sess.run(y, feed_dict={x :input})

它给了我以下错误。

You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

最佳答案

session.run() 的第一个参数应该是您想要获取的张量。

在您的情况下,它应该是 prediction 张量(因此您需要从 train_neural_network 返回它)。对其应用 argmax 以获得预测标签。

关于python - 从 tensorflow 中获取预测结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40307103/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com