- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想对 pandas 数据框中的分组数据执行一个函数。我有下面的 df 并迭代地执行以下操作,但认为这应该由 pandas groupby 完成。
import pandas as pd
import scipy
from scipy.stats import mstats
df = pd.DataFrame({'cfs': [147248, 94894, 81792, 176011, 208514, 18111, 56742, 154900, 32778, 142333, 45267, 145211, 3429, 1258, 65439], 'Alternatives':['A','B','C']*5})
alternatives = list(set(df['Alternatives']))
df2 = pd.DataFrame()
for alternative in alternatives:
alt = pd.DataFrame(df[(df.Alternatives == alternative)])
alt = alt.sort_values(['cfs'])
alt['rank'] = alt['cfs'].rank()
alt['pp'] = 1 - scipy.stats.mstats.plotting_positions(alt['cfs'],0,0)
df2 = df2.append(alt)
输出:
Alternatives cfs rank pp
12 A 3429 1.0 0.833333
6 A 56742 2.0 0.666667
9 A 142333 3.0 0.500000
0 A 147248 4.0 0.333333
3 A 176011 5.0 0.166667
5 C 18111 1.0 0.833333
8 C 32778 2.0 0.666667
14 C 65439 3.0 0.500000
2 C 81792 4.0 0.333333
11 C 145211 5.0 0.166667
13 B 1258 1.0 0.833333
10 B 45267 2.0 0.666667
1 B 94894 3.0 0.500000
7 B 154900 4.0 0.333333
4 B 208514 5.0 0.166667
我可以通过
获得排名df['rank'] = df['cfs'].groupby(df['Alternatives']).rank()
但是我无法获取绘图位置。我最接近的是:
group = df['cfs'].groupby(df['Alternatives']).apply(scipy.stats.mstats.plotting_positions,0,0 )
这给了我一个包含正确数据的 pandas 系列,但我想做的是:
df['pp'] = df['cfs'].groupby(df['Alternatives']).apply(scipy.stats.mstats.plotting_positions,0,0)
但是,这只会返回一列 NaN
谢谢
最佳答案
def func(x):
x['pp'] = 1 - scipy.stats.mstats.plotting_positions(x.cfs, 0, 0)
return x
df.groupby('Alternatives').apply(func)
Alternatives cfs pp
0 A 147248 0.333333
1 B 94894 0.500000
2 C 81792 0.333333
3 A 176011 0.166667
4 B 208514 0.166667
5 C 18111 0.833333
6 A 56742 0.666667
7 B 154900 0.333333
8 C 32778 0.666667
9 A 142333 0.500000
10 B 45267 0.666667
11 C 145211 0.166667
12 A 3429 0.833333
13 B 1258 0.833333
14 C 65439 0.500000
有助于调试 groupby
的是使用 get_group
:
g = df.groupby('Alternatives').get_group('A')
g.apply(whatever) # test on a single group and then apply to all at once
关于python - Pandas 对分组数据执行操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40409244/
您好,我正在处理 BIRT 报告。我有一个查询,我必须对父级的重复数据进行分组,但子级也不能分组! 在我的查询中: item 是父项,item_ledger_entry 是子项。我有来自 item.N
我正在使用 GA API。 这是针对 MCF 目标报告(底部)的标准目标完成指标表(顶部) 看一下这个: 总数加起来 (12,238),但看看按 channel 分组的分割有多么不同!我以为这些会很接
我正在开发一个流量计数器,我想获得 IP 和重复计数,但是如何? 就像是 :select ip, count(ip) from Redirect 返回 : null total ip count 重定
我尝试编写一个正则表达式来匹配条件表达式,例如: a!=2 1+2=2+a 我尝试提取运算符。我当前的正则表达式是“.+([!=<>]+).+” 但问题是匹配器总是尝试匹配组中可能的最短字符串
在 MS Transact SQL 中,假设我有一个这样的表(订单): Order Date Order Total Customer # 09/30/2008 8
我想按 m.ID 分组,并对每个 m.id 求和 (pm.amount_construction* prod.anzahl) 实际上我有以下结果: Meterial_id | amount_const
我想根据多列中的值对值进行分组。这是一个例子: 我想得到输出: {{-30,-50,20},{-20,30,60},{-30,NULL or other value, 20}} 我设法到达: SELE
我正在尝试找出运行此查询的最佳方式。我基本上需要返回在我们的系统中只下了一个订单的客户的“登录”字段列表(登录字段基本上是客户 ID/ key )。 我们系统的一些背景...... 客户在同一日期下的
给定以下mysql结果集: id code name importance '1234', 'ID-CS-B', 'Chocolate Sauce'
大家好,我的数据框中有以下列: LC_REF 1 DT 16 2C 2 DT 16 2C 3 DT 16 2C 1 DT 16 3C 6 DT 16 3C 3
我有这样的 mongoDB 集合 { "_id" : "EkKTRrpH4FY9AuRLj", "stage" : 10, }, { "_id" : "EkKTRrpH4FY9
假设我有一组数据对,其中 index 0 是值,index 1 是类型: input = [ ('11013331', 'KAT'), ('9085267',
java中用stream进行去重,排序,分组 一、distinct 1. 八大基本数据类型 List collect = ListUtil.of(1, 2, 3, 1, 2).stream().fil
基本上,我从 TABLE_A 中的这个开始 France - 100 France - 200 France - 300 Mexico - 50 Mexico - 50 Mexico - 56 Pol
我希望这个正则表达式 ([A-Z]+)$ 将选择此示例中的最后一次出现: AB.012.00.022ABC-1 AB.013.00.022AB-1 AB.014.00.022ABAB-1 但我没有匹配
我创建了一个数据透视表,但数据没有组合在一起。 任何人都可以帮助我获得所需的格式吗? 我为获取数据透视表而编写的查询: DECLARE @cols AS NVARCHAR(MAX), -- f
我想按时间段(月,周,日,小时,...)选择计数和分组。例如,我想选择行数并将它们按 24 小时分组。 我的表创建如下。日期是时间戳。 CREATE TABLE MSG ( MSG_ID dec
在 SQL Server 2005 中,我有一个包含如下数据的表: WTN------------Date 555-111-1212 2009-01-01 555-111-1212 2009-
题 假设我有 k 个标量列,如果它们沿着每列彼此在一定距离内,我想对它们进行分组。 假设简单 k 是 2 并且它们是我唯一的列。 pd.DataFrame(list(zip(sorted(choice
问题 在以下数据框中 df : import random import pandas as pd random.seed(999) sz = 50 qty = {'one': 1, 'two': 2
我是一名优秀的程序员,十分优秀!