- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试部署我的服务并从内部 pod 读取我的本地日志文件。
通过以下配置使用 DataDog 的 Helm chart 值:
## Default values for Datadog Agent
## See Datadog helm documentation to learn more:
## https://docs.datadoghq.com/agent/kubernetes/helm/
## @param image - object - required
## Define the Datadog image to work with.
#
image:
## @param repository - string - required
## Define the repository to use:
## use "datadog/agent" for Datadog Agent 6
## use "datadog/dogstatsd" for Standalone Datadog Agent DogStatsD6
#
repository: datadog/agent
## @param tag - string - required
## Define the Agent version to use.
## Use 6.13.0-jmx to enable jmx fetch collection
#
tag: 6.13.0
## @param pullPolicy - string - required
## The Kubernetes pull policy.
#
pullPolicy: IfNotPresent
## @param pullSecrets - list of key:value strings - optional
## It is possible to specify docker registry credentials
## See https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
#
# pullSecrets:
# - name: "<REG_SECRET>"
nameOverride: ""
fullnameOverride: ""
datadog:
## @param apiKey - string - required
## Set this to your Datadog API key before the Agent runs.
## ref: https://app.datadoghq.com/account/settings#agent/kubernetes
#
apiKey: "xxxxxxxx"
## @param apiKeyExistingSecret - string - optional
## Use existing Secret which stores API key instead of creating a new one.
## If set, this parameter takes precedence over "apiKey".
#
# apiKeyExistingSecret: <DATADOG_API_KEY_SECRET>
## @param appKey - string - optional
## If you are using clusterAgent.metricsProvider.enabled = true, you must set
## a Datadog application key for read access to your metrics.
#
appKey: "xxxxxx"
## @param appKeyExistingSecret - string - optional
## Use existing Secret which stores APP key instead of creating a new one
## If set, this parameter takes precedence over "appKey".
#
# appKeyExistingSecret: <DATADOG_APP_KEY_SECRET>
## @param securityContext - object - optional
## You can modify the security context used to run the containers by
## modifying the label type below:
#
# securityContext:
# seLinuxOptions:
# seLinuxLabel: "spc_t"
## @param clusterName - string - optional
## Set a unique cluster name to allow scoping hosts and Cluster Checks easily
#
# clusterName: <CLUSTER_NAME>
## @param name - string - required
## Daemonset/Deployment container name
## See clusterAgent.containerName if clusterAgent.enabled = true
#
name: datadog
## @param site - string - optional - default: 'datadoghq.com'
## The site of the Datadog intake to send Agent data to.
## Set to 'datadoghq.eu' to send data to the EU site.
#
# site: datadoghq.com
## @param dd_url - string - optional - default: 'https://app.datadoghq.com'
## The host of the Datadog intake server to send Agent data to, only set this option
## if you need the Agent to send data to a custom URL.
## Overrides the site setting defined in "site".
#
# dd_url: https://app.datadoghq.com
## @param logLevel - string - required
## Set logging verbosity, valid log levels are:
## trace, debug, info, warn, error, critical, and off
#
logLevel: INFO
## @param podLabelsAsTags - list of key:value strings - optional
## Provide a mapping of Kubernetes Labels to Datadog Tags.
#
# podLabelsAsTags:
# app: kube_app
# release: helm_release
# <KUBERNETES_LABEL>: <DATADOG_TAG_KEY>
## @param podAnnotationsAsTags - list of key:value strings - optional
## Provide a mapping of Kubernetes Annotations to Datadog Tags
#
# podAnnotationsAsTags:
# iam.amazonaws.com/role: kube_iamrole
# <KUBERNETES_ANNOTATIONS>: <DATADOG_TAG_KEY>
## @param tags - list of key:value elements - optional
## List of tags to attach to every metric, event and service check collected by this Agent.
##
## Learn more about tagging: https://docs.datadoghq.com/tagging/
#
# tags:
# - <KEY_1>:<VALUE_1>
# - <KEY_2>:<VALUE_2>
## @param useCriSocketVolume - boolean - required
## Enable container runtime socket volume mounting
#
useCriSocketVolume: true
## @param dogstatsdOriginDetection - boolean - optional
## Enable origin detection for container tagging
## https://docs.datadoghq.com/developers/dogstatsd/unix_socket/#using-origin-detection-for-container-tagging
#
# dogstatsdOriginDetection: true
## @param useDogStatsDSocketVolume - boolean - optional
## Enable dogstatsd over Unix Domain Socket
## ref: https://docs.datadoghq.com/developers/dogstatsd/unix_socket/
#
# useDogStatsDSocketVolume: true
## @param nonLocalTraffic - boolean - optional - default: false
## Enable this to make each node accept non-local statsd traffic.
## ref: https://github.com/DataDog/docker-dd-agent#environment-variables
#
nonLocalTraffic: true
## @param collectEvents - boolean - optional - default: false
## Enables this to start event collection from the kubernetes API
## ref: https://docs.datadoghq.com/agent/kubernetes/event_collection/
#
collectEvents: true
## @param leaderElection - boolean - optional - default: false
## Enables leader election mechanism for event collection.
#
# leaderElection: false
## @param leaderLeaseDuration - integer - optional - default: 60
## Set the lease time for leader election in second.
#
# leaderLeaseDuration: 60
## @param logsEnabled - boolean - optional - default: false
## Enables this to activate Datadog Agent log collection.
## ref: https://docs.datadoghq.com/agent/basic_agent_usage/kubernetes/#log-collection-setup
#
logsEnabled: true
## @param logsConfigContainerCollectAll - boolean - optional - default: false
## Enable this to allow log collection for all containers.
## ref: https://docs.datadoghq.com/agent/basic_agent_usage/kubernetes/#log-collection-setup
#
logsConfigContainerCollectAll: true
## @param containerLogsPath - string - optional - default: /var/lib/docker/containers
## This to allow log collection from container log path. Set to a different path if not
## using docker runtime.
## ref: https://docs.datadoghq.com/agent/kubernetes/daemonset_setup/?tab=k8sfile#create-manifest
#
containerLogsPath: /var/lib/docker/containers
## @param apmEnabled - boolean - optional - default: false
## Enable this to enable APM and tracing, on port 8126
## ref: https://github.com/DataDog/docker-dd-agent#tracing-from-the-host
#
apmEnabled: true
## @param processAgentEnabled - boolean - optional - default: false
## Enable this to activate live process monitoring.
## Note: /etc/passwd is automatically mounted to allow username resolution.
## ref: https://docs.datadoghq.com/graphing/infrastructure/process/#kubernetes-daemonset
#
processAgentEnabled: true
## @param env - list of object - optional
## The dd-agent supports many environment variables
## ref: https://github.com/DataDog/datadog-agent/tree/master/Dockerfiles/agent#environment-variables
#
# env:
# - name: <ENV_VAR_NAME>
# value: <ENV_VAR_VALUE>
## @param volumes - list of objects - optional
## Specify additional volumes to mount in the dd-agent container
#
# volumes:
# - hostPath:
# path: <HOST_PATH>
# name: <VOLUME_NAME>
## @param volumeMounts - list of objects - optional
## Specify additional volumes to mount in the dd-agent container
#
# volumeMounts:
# - name: <VOLUME_NAME>
# mountPath: <CONTAINER_PATH>
# readOnly: true
## @param confd - list of objects - optional
## Provide additional check configurations (static and Autodiscovery)
## Each key becomes a file in /conf.d
## ref: https://github.com/DataDog/datadog-agent/tree/master/Dockerfiles/agent#optional-volumes
## ref: https://docs.datadoghq.com/agent/autodiscovery/
#
confd:
conf.yaml: |-
init_config:
instances:
logs:
- type: "file"
path: "/app/logs/service.log"
service: nodejs
source: nodejs
sourcecategory: sourcecode
# kubernetes_state.yaml: |-
# ad_identifiers:
# - kube-state-metrics
# init_config:
# instances:
# - kube_state_url: http://%%host%%:8080/metrics
## @param checksd - list of key:value strings - optional
## Provide additional custom checks as python code
## Each key becomes a file in /checks.d
## ref: https://github.com/DataDog/datadog-agent/tree/master/Dockerfiles/agent#optional-volumes
#
# checksd:
# service.py: |-
## @param criSocketPath - string - optional
## Path to the container runtime socket (if different from Docker)
## This is supported starting from agent 6.6.0
#
# criSocketPath: /var/run/containerd/containerd.sock
## @param dogStatsDSocketPath - string - optional
## Path to the DogStatsD socket
#
# dogStatsDSocketPath: /var/run/datadog/dsd.socket
## @param livenessProbe - object - optional
## Override the agent's liveness probe logic from the default:
## In case of issues with the probe, you can disable it with the
## following values, to allow easier investigating:
#
# livenessProbe:
# exec:
# command: ["/bin/true"]
## @param resources - object -required
## datadog-agent resource requests and limits
## Make sure to keep requests and limits equal to keep the pods in the Guaranteed QoS class
## Ref: http://kubernetes.io/docs/user-guide/compute-resources/
#
resources: {}
# requests:
# cpu: 200m
# memory: 256Mi
# limits:
# cpu: 200m
# memory: 256Mi
## @param clusterAgent - object - required
## This is the Datadog Cluster Agent implementation that handles cluster-wide
## metrics more cleanly, separates concerns for better rbac, and implements
## the external metrics API so you can autoscale HPAs based on datadog metrics
## ref: https://docs.datadoghq.com/agent/kubernetes/cluster/
#
clusterAgent:
## @param enabled - boolean - required
## Set this to true to enable Datadog Cluster Agent
#
enabled: false
containerName: cluster-agent
image:
repository: datadog/cluster-agent
tag: 1.3.2
pullPolicy: IfNotPresent
## @param token - string - required
## This needs to be at least 32 characters a-zA-z
## It is a preshared key between the node agents and the cluster agent
## ref:
#
token: ""
replicas: 1
## @param metricsProvider - object - required
## Enable the metricsProvider to be able to scale based on metrics in Datadog
#
metricsProvider:
enabled: true
## @param clusterChecks - object - required
## Enable the Cluster Checks feature on both the cluster-agents and the daemonset
## ref: https://docs.datadoghq.com/agent/autodiscovery/clusterchecks/
## Autodiscovery via Kube Service annotations is automatically enabled
#
clusterChecks:
enabled: true
## @param confd - list of objects - optional
## Provide additional cluster check configurations
## Each key will become a file in /conf.d
## ref: https://docs.datadoghq.com/agent/autodiscovery/
#
# confd:
# mysql.yaml: |-
# cluster_check: true
# instances:
# - server: '<EXTERNAL_IP>'
# port: 3306
# user: datadog
# pass: '<YOUR_CHOSEN_PASSWORD>'
## @param resources - object -required
## Datadog cluster-agent resource requests and limits.
#
resources: {}
# requests:
# cpu: 200m
# memory: 256Mi
# limits:
# cpu: 200m
# memory: 256Mi
## @param priorityclassName - string - optional
## Name of the priorityClass to apply to the Cluster Agent
# priorityClassName: system-cluster-critical
## @param livenessProbe - object - optional
## Override the agent's liveness probe logic from the default:
## In case of issues with the probe, you can disable it with the
## following values, to allow easier investigating:
#
# livenessProbe:
# exec:
# command: ["/bin/true"]
## @param podAnnotations - list of key:value strings - optional
## Annotations to add to the cluster-agents's pod(s)
#
# podAnnotations:
# key: "value"
## @param readinessProbe - object - optional
## Override the cluster-agent's readiness probe logic from the default:
#
# readinessProbe:
rbac:
## @param created - boolean - required
## If true, create & use RBAC resources
#
create: true
## @param serviceAccountName - string - required
## Ignored if rbac.create is true
#
serviceAccountName: default
tolerations: []
kubeStateMetrics:
## @param enabled - boolean - required
## If true, deploys the kube-state-metrics deployment.
## ref: https://github.com/kubernetes/charts/tree/master/stable/kube-state-metrics
#
enabled: true
kube-state-metrics:
rbac:
## @param created - boolean - required
## If true, create & use RBAC resources
#
create: true
serviceAccount:
## @param created - boolean - required
## If true, create ServiceAccount, require rbac kube-state-metrics.rbac.create true
#
create: true
## @param name - string - required
## The name of the ServiceAccount to use.
## If not set and create is true, a name is generated using the fullname template
#
name: coupon-service-account
## @param resources - object - optional
## Resource requests and limits for the kube-state-metrics container.
#
# resources:
# requests:
# cpu: 200m
# memory: 256Mi
# limits:
# cpu: 200m
# memory: 256Mi
daemonset:
## @param enabled - boolean - required
## You should keep Datadog DaemonSet enabled!
## The exceptional case could be a situation when you need to run
## single DataDog pod per every namespace, but you do not need to
## re-create a DaemonSet for every non-default namespace install.
## Note: StatsD and DogStatsD work over UDP, so you may not
## get guaranteed delivery of the metrics in Datadog-per-namespace setup!
#
enabled: true
## @param useDedicatedContainers - boolean - optional
## Deploy each datadog agent process in a separate container. Allow fine-grained
## control over allocated resources and better isolation.
#
# useDedicatedContainers: false
containers:
agent:
## @param env - list - required
## Additionnal environment variables for the agent container.
#
# env:
## @param logLevel - string - optional
## Set logging verbosity, valid log levels are:
## trace, debug, info, warn, error, critical, and off.
## If not set, fall back to the value of datadog.logLevel.
#
logLevel: INFO
## @param resources - object - required
## Resource requests and limits for the agent container.
#
resources:
requests:
cpu: 200m
memory: 256Mi
limits:
cpu: 200m
memory: 256Mi
processAgent:
## @param env - list - required
## Additionnal environment variables for the process-agent container.
#
# env:
## @param logLevel - string - optional
## Set logging verbosity, valid log levels are:
## trace, debug, info, warn, error, critical, and off.
## If not set, fall back to the value of datadog.logLevel.
#
logLevel: INFO
## @param resources - object - required
## Resource requests and limits for the process-agent container.
#
resources:
requests:
cpu: 100m
memory: 200Mi
limits:
cpu: 100m
memory: 200Mi
traceAgent:
## @param env - list - required
## Additionnal environment variables for the trace-agent container.
#
# env:
## @param logLevel - string - optional
## Set logging verbosity, valid log levels are:
## trace, debug, info, warn, error, critical, and off.
## If not set, fall back to the value of datadog.logLevel.
#
logLevel: INFO
## @param resources - object - required
## Resource requests and limits for the trace-agent container.
#
resources:
requests:
cpu: 100m
memory: 200Mi
limits:
cpu: 100m
memory: 200Mi
## @param useHostNetwork - boolean - optional
## Bind ports on the hostNetwork. Useful for CNI networking where hostPort might
## not be supported. The ports need to be available on all hosts. It Can be
## used for custom metrics instead of a service endpoint.
##
## WARNING: Make sure that hosts using this are properly firewalled otherwise
## metrics and traces are accepted from any host able to connect to this host.
#
useHostNetwork: true
## @param useHostPort - boolean - optional
## Sets the hostPort to the same value of the container port. Needs to be used
## to receive traces in a standard APM set up. Can be used as for sending custom metrics.
## The ports need to be available on all hosts.
##
## WARNING: Make sure that hosts using this are properly firewalled otherwise
## metrics and traces are accepted from any host able to connect to this host.
#
useHostPort: true
## @param useHostPID - boolean - optional
## Run the agent in the host's PID namespace. This is required for Dogstatsd origin
## detection to work. See https://docs.datadoghq.com/developers/dogstatsd/unix_socket/
#
# useHostPID: true
## @param podAnnotations - list of key:value strings - optional
## Annotations to add to the DaemonSet's Pods
#
# podAnnotations:
# <POD_ANNOTATION>: '[{"key": "<KEY>", "value": "<VALUE>"}]'
## @param tolerations - array - optional
## Allow the DaemonSet to schedule on tainted nodes (requires Kubernetes >= 1.6)
#
# tolerations: []
## @param nodeSelector - object - optional
## Allow the DaemonSet to schedule on selected nodes
## Ref: https://kubernetes.io/docs/user-guide/node-selection/
#
# nodeSelector: {}
## @param affinity - object - optional
## Allow the DaemonSet to schedule using affinity rules
## Ref: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
#
# affinity: {}
## @param updateStrategy - string - optional
## Allow the DaemonSet to perform a rolling update on helm update
## ref: https://kubernetes.io/docs/tasks/manage-daemon/update-daemon-set/
#
# updateStrategy: RollingUpdate
## @param priorityClassName - string - optional
## Sets PriorityClassName if defined.
#
# priorityClassName:
## @param podLabels - object - optional
## Sets podLabels if defined.
#
# podLabels: {}
## @param useConfigMap - boolean - optional
# Configures a configmap to provide the agent configuration
#
# useConfigMap: false
deployment:
## @param enabled - boolean - required
## Apart from DaemonSet, deploy Datadog agent pods and related service for
## applications that want to send custom metrics. Provides DogStasD service.
#
enabled: false
## @param replicas - integer - required
## If you want to use datadog.collectEvents, keep deployment.replicas set to 1.
#
replicas: 1
## @param affinity - object - required
## Affinity for pod assignment
## Ref: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
#
affinity: {}
## @param tolerations - array - required
## Tolerations for pod assignment
## Ref: https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
#
tolerations: []
## @param dogstatsdNodePort - integer - optional
## If you're using a NodePort-type service and need a fixed port, set this parameter.
#
# dogstatsdNodePort: 8125
## @param traceNodePort - integer - optional
## If you're using a NodePort-type service and need a fixed port, set this parameter.
#
# traceNodePort: 8126
## @param service - object - required
##
#
service:
type: ClusterIP
annotations: {}
## @param priorityClassName - string - optional
## Sets PriorityClassName if defined.
#
# priorityClassName:
clusterchecksDeployment:
## @param enabled - boolean - required
## If true, deploys agent dedicated for running the Cluster Checks instead of running in the Daemonset's agents.
## ref: https://docs.datadoghq.com/agent/autodiscovery/clusterchecks/
#
enabled: false
rbac:
## @param dedicated - boolean - required
## If true, use a dedicated RBAC resource for the cluster checks agent(s)
#
dedicated: false
## @param serviceAccountName - string - required
## Ignored if rbac.create is true
#
serviceAccountName: default
## @param replicas - integer - required
## If you want to deploy the cluckerchecks agent in HA, keep at least clusterchecksDeployment.replicas set to 2.
## And increase the clusterchecksDeployment.replicas according to the number of Cluster Checks.
#
replicas: 2
## @param resources - object -required
## Datadog clusterchecks-agent resource requests and limits.
#
resources: {}
# requests:
# cpu: 200m
# memory: 500Mi
# limits:
# cpu: 200m
# memory: 500Mi
## @param affinity - object - optional
## Allow the ClusterChecks Deployment to schedule using affinity rules.
## By default, ClusterChecks Deployment Pods are forced to run on different Nodes.
## Ref: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
#
# affinity:
## @param nodeSelector - object - optional
## Allow the ClusterChecks Deploument to schedule on selected nodes
## Ref: https://kubernetes.io/docs/user-guide/node-selection/
#
# nodeSelector: {}
## @param tolerations - array - required
## Tolerations for pod assignment
## Ref: https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
#
# tolerations: []
## @param livenessProbe - object - optional
## Override the agent's liveness probe logic from the default:
## In case of issues with the probe, you can disable it with the
## following values, to allow easier investigating:
#
# livenessProbe:
# exec:
# command: ["/bin/true"]
## @param env - list of object - optional
## The dd-agent supports many environment variables
## ref: https://github.com/DataDog/datadog-agent/tree/master/Dockerfiles/agent#environment-variables
#
# env:
# - name: <ENV_VAR_NAME>
# value: <ENV_VAR_VALUE>
如您所见,我希望我的日志可以在/app/logs/service.log 中找到,这就是我向我的 conf.d 提供的内容:
confd:
conf.yaml: |-
init_config:
instances:
logs:
- type: "file"
path: "/app/logs/service.log"
service: nodejs
source: nodejs
sourcecategory: sourcecode
在我的服务中,我使用 WinstonLogger 使用 JSON 格式的文件传输。
transports: [
new transports.File({
winston.format.json(),
filename: `${process.env.LOGS_PATH}/service.log`,
}),
]
process.env.LOGS_PATH = '/app/logs'
毕竟,在预期的/app/logs 文件夹中探索我的 pod 和 tail -f my service.log 时,我发现应用程序实际上按预期以 JSON 格式写入日志。
我的 DataDog 没有获取日志,并且它们没有显示在日志部分中..
注意::我不会在我的服务中装载任何卷..
我错过了什么?我应该将本地日志挂载到/var/log/pods/[service_name]/吗?
最佳答案
主要问题是您必须在应用程序容器和代理容器中安装该卷才能使其可用。这还意味着您必须在代理获取日志文件之前找到存储日志文件的位置。对每个容器执行此操作可能会变得难以维护且耗时。
另一种方法是将日志发送到 stdout
并让代理通过 Docker 集成收集它们。由于您将 logsConfigContainerCollectAll
配置为 true
,代理已配置为从每个容器输出收集日志,因此将 Winston 配置为输出到 stdout
应该可以正常工作。
关于node.js - 使用 DataDog 的 Helm Chart 进行 DataDog GKE NESTJS 集成,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58267953/
我正在尝试根据环境使用 datadog 设置松弛监视器。例如如果环境是生产环境,则进入松弛 channel A,如果是 uat,则进入松弛 channel B,所有其他环境应进入松弛 channel
我正在使用 Datadog 来监控我的浏览器控制台日志。我需要为 datadog 日志添加不同的标签。我找到的唯一选择是使用 DD_LOGS.addContext('referrer', docume
我正在创建仪表板,并且有以下两个指标:event.sent 和 event.failed。幸运的是,我还没有发生任何失败的事件(敲木头),所以这个指标在 datadog 上还不存在。 但我想创建它,以
我正在创建仪表板,并且有以下两个指标:event.sent 和 event.failed。幸运的是,我还没有发生任何失败的事件(敲木头),所以这个指标在 datadog 上还不存在。 但我想创建它,以
我不明白 之间的区别事件 和 指标 在 DataDog .我正在尝试在我的仪表板中创建一个计数指示器,以便我现在可以了解某种类型的事件发生了多少次。 有很多事件名为some.event.name ,但
我正在尝试在 DataDog 中创建一个警报,当磁盘性能降低我们的机器速度时会提醒我们。 作为业务需求,我会说如果 IO 几乎饱和(超过 90%)超过 30 分钟,则应该触发警报。 以下是当前记录的一
我有一个使用多个标签向 DataDog 发布指标的应用程序,我的 DataDog 代理有一行看起来像 histogram_percentiles: 90, 95, 99 所以我的指标(我们称它为 Re
当消息被格式化为 json 时,它会自动变成属性。似乎如果不先将属性转换为分面就无法查询属性(这仅适用于新的日志行,这意味着您有时必须看到某些内容出现,然后将其分面化,然后对其进行调试)。 有没有办法
引用Datadog's 'Submit metrics' API documentation ,我尝试使用 Postman 使用以下有效负载发送指标: API:POST https://api.dat
是否可以通过 Datadog REST API 导出或下载 Datadog 仪表板? Datadog 监视器的导出和更新工作正常。我需要仪表板的相同功能。 最佳答案 更新的答案: 仍然是。 新仪表板端
我正在尝试使用 Datadog 通过 JMX 监视我的应用程序...我已成功将我的应用程序部署在 Docker 容器中,并公开了 JMX 端口并确认我确实可以从任何地方连接到该端口并获取信息。 因此,
我正在尝试部署我的服务并从内部 pod 读取我的本地日志文件。 通过以下配置使用 DataDog 的 Helm chart 值: ## Default values for Datadog Agent
在 DataDog 日志搜索中,我想为特定方面搜索带有空字符串的日志,例如带有 userId 的日志为空。 @userId:'' , @userId:"" , -@userId:*没有工作。 最佳答案
我有一个指标,它有一个带有许多不同值的标签(该值是一个文件名)。如何创建一个查询来确定指标上存在的该标签的不同值的数量? 例如,如果在一个时间范围内收到 4 个指标,带有以下标签“file_name:
在 datadog 中使用公式时,似乎没有办法用零替换没有数据。我尝试过填零,但似乎不起作用我只是希望我的 dd 代理监视器在关闭时显示 0 而不是没有数据 最佳答案 怎么样the "default"
我一直在尝试了解 Datadog 监控警报的时间聚合。官方文档http://docs.datadoghq.com/guides/monitors/#define-the-conditions我理解时间
我认为这应该是可能的,但我找不到文档化的语法。我想构建一个显示与 tag_one:A 或 tag_one:B 匹配的指标的 DD 图。这可能吗?如果是这样,语法是什么? 最佳答案 是的,以下应该有效:
我正在尝试为 google pub sub 创建监视器,但收到“无效查询”错误。这是我查看另一个工作监视器的源代码时的查询文本,所以我很困惑为什么这不起作用。 错误:错误:创建监视器时出错:400 错
我有一条消息,如“服务正在运行”,我无法更改,因此在日志 Grok Parser 中,我想将其替换为“信息 |服务正在运行”或手动或以某种方式手动分配,如 %{level=INFO} 。请多多指教。
我在时间板上有一个时间序列图,它显示一个指标的数据,该指标具有多个称为“页面”的标签。该图的每个标签都有一行,我正在对值运行函数,因此对我的数据的查询是“ewma_5(avg:client.load_
我是一名优秀的程序员,十分优秀!