gpt4 book ai didi

Python csv 切断部分列

转载 作者:太空宇宙 更新时间:2023-11-04 02:59:16 24 4
gpt4 key购买 nike

我遇到了这个奇怪的问题。

我还应该提到这在过去有效,所以我也在想 .csv 或特定行本身可能有问题。

快速分解。我有一个脚本可以从 CVE(漏洞)数据的 .csv 文件中提取数据。然后它使用 cvss 模块对我们使用输出作为衡量补丁优先级和紧迫性的方法的发现进行重新评分。

(此脚本是我们实现新工具之前的临时修复)

这就是它搞砸的地方。这是我的摄取文件输出现在的样子。

Vulnerability Title,Plugin ID,Original CVSS Score,Default Vector,Original Severity,AWS Score,AWS Vector,AWS Severity,Hosts,Host Type,Percentage Impacted
Cisco IOS IKEv1 Packet Handling Remote Information Disclosure (cisco-sa-20160916-ikev1) (BENIGNCERTAIN),NES-93736,4.6,CVSS2#AV:N/AC:L/Au:N/C:P/I:N/A:N,,,AV:N/AC:L/Au:N/C:P/I:N/A:N,,26,26,
Cisco IOS Software TCP Memory Leak DoS (cisco-sa-20150325-tcpleak),NES-82568,4.9,CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C,,,AV:N/AC:L/Au:N/C:N/I:N/A:C,,30,26,
RHEL 5 / 6 / 7 : nss and nss-util (RHSA-2016:2779),NES-94912,4.2,CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C/E:F/RL:OF/RC:ND,,,AV:N/AC:M/Au:N/C:C/I:C/A:C/E:F/RL:OF/RC:ND,,5112,23,

这是我的脚本之后的输出(附在下面)

Vulnerability Title,Plugin ID,Original CVSS Score,Default Vector,Original Severity,AWS Score,AWS Vector,AWS Severity,Hosts,Host Type,Percentage Impacted
ium,4.6,AV:A/AC:H/Au:M/C:P/I:N/A:P/CDP:L/TD:H/CR:H/IR:H/AR:H,Medium,26,26,0.2524271844660194
Cisco IOS Software TCP Memory Leak DoS (cisco-sa-20150325-tcpleak),NES-82568,4.9,CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C,Medium,4.9,AV:A/AC:H/Au:M/C:N/I:N/A:C/CDP:L/TD:M/CR:H/IR:H/AR:H,Medium,30,26,0.2912621359223301
RHEL 5 / 6 / 7 : nss and nss-util (RHSA-2016:2779),NES-94912,4.2,CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C/E:F/RL:OF/RC:ND,Medium,4.2,AV:A/AC:H/Au:M/C:C/I:C/A:C/E:F/RL:OF/RC:ND/CDP:L/TD:M/CR:H/IR:H/AR:H,Medium,5112,23,0.615458704550927

为了进一步解释,第 1 行以“ium”开头,它是来 self 的脚本底部第 128 行(#ORIGINAL SCORE 的部分)的单词 Medium 的截断。它应该说中等。所以基本上,如果你看一下我的输入中的 2 个,并与输出进行比较,它会删除整行,并且只添加脚本试图添加的单词的一半。我想可能是因为所有的支架或其他原因,但我不确定。

Cisco IOS IKEv1 Packet Handling Remote Information Disclosure (cisco-sa-20160916-ikev1) (BENIGNCERTAIN),NES-93736,4.6,CVSS2#AV:N/AC:L/Au:N/C:P/I:N/A:N,

这是执行此功能的脚本。我知道它有点难看,欢迎提出改进建议,但找出为什么它会弄乱我的文件是我现在的首要任务。我考虑过改用 pandas,但这需要一些时间,因为我从来没有使用过它,所以还不知道该怎么做。

def rescore_function():
#headers
print 'Starting Rescore'
csv_in = open('/tmp/rescore_test.csv', 'rb')
csv_out = open('/tmp/rescored_vulnerabilities.csv', 'wb')
writer = csv.writer(csv_out)
reader = csv.reader(csv_in)
headers = next(reader, None)
if headers:
writer.writerow(headers)

print 'Creating Target Distrobution'
for row in csv.reader(csv_in):
#This is a terrible way of setting up the percentage of hosts impacted for target distrobution. Its ugly and horrible. Host count defines the host impacted, host_type identifies what kind of host it is. Such as Alinux, Rhel5, or Cisco IOS
host_count = float(row[8])
host_type = float(row[9])
alinux_impact = host_count / ALINUX_HOST
cisco_impact = host_count / CISCO_COUNT
juniper_impact = host_count / JUNIPER_COUNT
citrix_impact = host_count / CITRIX_COUNT
all_linux= host_count / LINUX_TOTAL
print 'math set'

#The reason for vul_id is 3 lists combined is simple. alinux_impact NEEDS to be 24, cisco NEEDs to be 26, juniper NEEDS to match 27, because vul_id is the softwares 'vulnerability ID type
#range falls into all_linux. So fillvalue=vul_os[-1] means if its not 24,26,27, it is "all_linux" which means it compares it to the All linux number.
vul_id = [24, 26, 27, 25] + range(24) + range(28,101)
vul_os = [alinux_impact, cisco_impact, juniper_impact, all_linux]

append_file = open('/tmp/rescored_vulnerabilities.csv', 'ab')
append_write = csv.writer(append_file)

#Does the for loop with the fillvalue as mentioned above. Basically Y is the host type (linux, Cisco IOS, etc) and X is the vulnerability type. So it runs through and figures out the TD and rescore methods.
#X equals the percetange of impacted, so the Metric will be based on amount/percentage of X impacted and does a regex search and replace based on that using the CVSS calculations.
print vul_id
print vul_os
for x,y in izip_longest(vul_os, vul_id, fillvalue=vul_os[-1]):
print x,y
print host_type
#VECTOR REGEXP, host_type is which OS/Device type. 23 = RHEL5, 24 = Alinux, 26 = Cisco, 27 = Juniper
if host_type == y:
row[10] = x
if x <= 0.25:
AC_Metric = 'A:C/CDP:L/TD:L/CR:H/IR:H/AR:H'
AP_Metric = 'A:P/CDP:L/TD:L/CR:H/IR:H/AR:H'
AN_Metric = 'A:N/CDP:L/TD:L/CR:H/IR:H/AR:H'
RCUC_Metric = 'RC:UC/CDP:L/TD:L/CR:H/IR:H/AR:H'
RCUR_Metric = 'RC:UR/CDP:L/TD:L/CR:H/IR:H/AR:H'
RCC_Metric = 'RC:C/CDP:L/TD:L/CR:H/IR:H/AR:H'
RCND_Metric = 'RC:ND/CDP:L/TD:L/CR:H/IR:H/AR:H'
elif 0.26 <= x <= 0.75:
AC_Metric = 'A:C/CDP:L/TD:M/CR:H/IR:H/AR:H'
AP_Metric = 'A:P/CDP:L/TD:M/CR:H/IR:H/AR:H'
AN_Metric = 'A:N/CDP:L/TD:M/CR:H/IR:H/AR:H'
RCUC_Metric = 'RC:UC/CDP:L/TD:M/CR:H/IR:H/AR:H'
RCUR_Metric = 'RC:UR/CDP:L/TD:M/CR:H/IR:H/AR:H'
RCC_Metric = 'RC:C/CDP:L/TD:M/CR:H/IR:H/AR:H'
RCND_Metric = 'RC:ND/CDP:L/TD:M/CR:H/IR:H/AR:H'
else:
AC_Metric = 'A:C/CDP:L/TD:H/CR:H/IR:H/AR:H'
AP_Metric = 'A:P/CDP:L/TD:H/CR:H/IR:H/AR:H'
AN_Metric = 'A:N/CDP:L/TD:H/CR:H/IR:H/AR:H'
RCUC_Metric = 'RC:UC/CDP:L/TD:H/CR:H/IR:H/AR:H'
RCUR_Metric = 'RC:UR/CDP:L/TD:H/CR:H/IR:H/AR:H'
RCC_Metric = 'RC:C/CDP:L/TD:H/CR:H/IR:H/AR:H'
RCND_Metric = 'RC:ND/CDP:L/TD:H/CR:H/IR:H/AR:H'


text = row[6]
text = re.sub(r'AV:N','AV:A',text)
text = re.sub(r'AC:L','AC:H',text)
text = re.sub(r'AC:M','AC:H',text)
text = re.sub(r'Au:N','Au:M',text)
text = re.sub(r'Au:S','Au:M',text)
text = re.sub(r'A:C$',AC_Metric,text)
text = re.sub(r'A:P$',AP_Metric,text)
text = re.sub(r'A:N$',AP_Metric,text)
text = re.sub(r'RC:UC',RCUC_Metric,text)
text = re.sub(r'RC:UR',RCUR_Metric,text)
text = re.sub(r'RC:C',RCC_Metric,text)
text = re.sub(r'RC:ND',RCND_Metric,text)
row[6] = text
#NEW SCORE, uses CVSS module to take the previous vector and find out the the numbered score. It then uses that number to define the severity word.
try:
vector = row[6]
c = CVSS2(vector)
row[5] = c.scores()[2]
vul_score = row[5]
if 0 <= vul_score <= 3.9:
vuln_word = 'Low'
elif 4.0 <= vul_score <=6.9:
vuln_word = 'Medium'
elif 7.0 <= vul_score <= 9.9:
vuln_word = 'High'
else:
vuln_word = 'Critical'
row[7] = vuln_word
except CVSS2MalformedError:
rescored_success = False
pass
#ORIGINAL SCORE, does the same as above for the original vector since NESSUS does not provide the Severity "word". This only finds the word, not the number value.
default_score = float(row[2])
if 0 <= default_score <= 3.9:
default_severity = 'Low'
elif 4.0 <= default_score <=6.9:
default_severity = 'Medium'
elif 7.0 <= default_score <= 9.9:
default_severity = 'High'
else:
default_severity = 'Critical'
row[4] = default_severity
append_write.writerow(row)

最佳答案

您的代码非常大,很难重现,但我怀疑写入文件句柄和所有正在进行的缓冲/写入模式下的并发缓冲文件访问有问题。好乱

  1. 首先使用 csv_out = open('/tmp/rescored_vulnerabilities.csv', 'wb')
  2. 打开/截断
  3. 你写标题
  4. 对于每次迭代,虽然上述句柄未关闭,但您以追加 模式打开文件:append_file = open('/tmp/rescored_vulnerabilities.csv', 'ab')
  5. 你也不要关闭append_file!

我会这样建议:​​

  • 先截断打开即可
  • 删除 append_file = open('/tmp/rescored_vulnerabilities.csv', 'ab')
  • append_write 替换为 write(它将起作用,write 指向同一个文件并且仍然打开)
  • 不要忘记在最后close csv_out(或者将所有代码放在with open(...) as csv_out: block

请注意,此问题仅适用于 Un*x。在 Windows 文件系统上,它会立即抛出异常,因为文件不能在写入模式下打开两次(有时也是如此)。

关于Python csv 切断部分列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41451324/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com