- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想以一种有效的方式向 pandas 切片添加值,因为这个函数经常被调用。结构如下所示:
import pandas as pd
import numpy as np
names = ["a", "b", "c", "d", "e", "f"]
mat = pd.DataFrame(0.0, index=names, columns=names)
# now comes the `tricky' part
positive_instances = ["a", "e", "c"]
negative_instances = ["d", "b", "f"]
p_mat = np.array([[1.,2.],[3.,4.]])
mat.loc[positive_instances, positive_instances] += p_mat[0,0]
mat.loc[positive_instances, negative_instances] += p_mat[0,1]
mat.loc[negative_instances, positive_instances] += p_mat[1,0]
mat.loc[negative_instances, negative_instances] += p_mat[1,1]
所需的新矩阵 mat
如下所示:
mat =
a b c d e f
a 1 2 1 2 1 2
b 3 4 3 4 3 4
c 1 2 1 2 1 2
d 3 4 3 4 3 4
e 1 2 1 2 1 2
f 3 4 3 4 3 4
注释下面的结构嵌入到一个 for 循环中。有几种不同的正面和负面实例。添加数据结构:
positive_instances
和 negative_instances
总是不相交的,不需要相同的长度positive_instances
和negative_instances
的并集总是names
positive_instances
始终位于 p_mat
的索引 0
并且 negative_instances
始终位于索引 1
。 我想有一种更有效的方法可以实现目标。任何帮助将不胜感激。
编辑:更正了代码中的变量名称并添加了所需的输出。
Edit2:添加了关于 positive_instances
和 negative_instances
的性质的信息
最佳答案
我们可以在这里使用 NumPy 来有效地将值分配到数组中,使用它的广播索引 np.ix_
,因此使用 .loc[row,col]
模拟与 Pandas 中相同的行为。完成分配后,我们将创建输出数据框。
因此,实现应该是这样的——
sidx = np.argsort(names)
p_idx = sidx[np.searchsorted(names, positive_instances, sorter= sidx)]
n_idx = sidx[np.searchsorted(names, negative_instances, sorter= sidx)]
n = len(names)
arr = np.zeros((n,n),dtype=p_mat.dtype)
arr[np.ix_(p_idx, p_idx)] = +p_mat[0,0]
arr[np.ix_(p_idx, n_idx)] = +p_mat[0,1]
arr[np.ix_(n_idx, p_idx)] = +p_mat[1,0]
arr[np.ix_(n_idx, n_idx)] = +p_mat[1,1]
df = pd.DataFrame(arr, index=names, columns=names)
运行时测试-
方法:
def func0(p_mat, names, positive_instances, negative_instances):
mat = pd.DataFrame(0.0, index=names, columns=names)
mat.loc[positive_instances, positive_instances] += p_mat[0,0]
mat.loc[positive_instances, negative_instances] += p_mat[0,1]
mat.loc[negative_instances, positive_instances] += p_mat[1,0]
mat.loc[negative_instances, negative_instances] += p_mat[1,1]
return mat
def func1(p_mat, names, positive_instances, negative_instances):
sidx = np.argsort(names)
p_idx = sidx[np.searchsorted(names, positive_instances, sorter= sidx)]
n_idx = sidx[np.searchsorted(names, negative_instances, sorter= sidx)]
n = len(names)
arr = np.zeros((n,n),dtype=p_mat.dtype)
arr[np.ix_(p_idx, p_idx)] = +p_mat[0,0]
arr[np.ix_(p_idx, n_idx)] = +p_mat[0,1]
arr[np.ix_(n_idx, p_idx)] = +p_mat[1,0]
arr[np.ix_(n_idx, n_idx)] = +p_mat[1,1]
df = pd.DataFrame(arr, index=names, columns=names)
return df
时间 -
In [109]: names = ["a", "f", "d","b", "c", "e"]
...:
...: # now comes the `tricky' part
...: positive_instances = ["a", "e", "c"]
...: negative_instances = ["d", "b", "f"]
...:
...: p_mat = np.array([[1.,2.],[3.,4.]])
...:
In [110]: %timeit func0(p_mat, names, positive_instances, negative_instances)
100 loops, best of 3: 4.87 ms per loop
In [111]: %timeit func1(p_mat, names, positive_instances, negative_instances)
10000 loops, best of 3: 189 µs per loop
In [112]: 4870.0/189
Out[112]: 25.767195767195766
25x+
在那里加速!
关于python - 给 Pandas 切片增值的高效方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42672856/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!