gpt4 book ai didi

python - 在 List 中具有不同大小的 List 的 pandas 中制作 DataFrame

转载 作者:太空宇宙 更新时间:2023-11-04 02:53:35 25 4
gpt4 key购买 nike

我有这样的数据

genre_list
Out[7]:
0 [Action, Adventure, Fantasy, Sci-Fi]
1 [Action, Adventure, Fantasy]
2 [Action, Adventure, Thriller]
3 [Action, Thriller]
4 [Documentary]
5 [Action, Adventure, Sci-Fi]
6 [Action, Adventure, Romance]
7 [Adventure, Animation, Comedy, Family, Fantasy...
8 [Action, Adventure, Sci-Fi]
9 [Adventure, Family, Fantasy, Mystery]
10 [Action, Adventure, Sci-Fi]
11 [Action, Adventure, Sci-Fi]

我编码以制作具有不同列表大小的数据框

genre_df = pd.DataFrame()
for i in range(len(genre_list)):
genre_df = genre_df.append(pd.DataFrame(genre_list[i]).T)

得到这个

genre_df.head()
Out[9]:
0 1 2 3 4 5 6 7
0 Action Adventure Fantasy Sci-Fi NaN NaN NaN NaN
0 Action Adventure Fantasy NaN NaN NaN NaN NaN
0 Action Adventure Thriller NaN NaN NaN NaN NaN
0 Action Thriller NaN NaN NaN NaN NaN NaN
0 Documentary NaN NaN NaN NaN NaN NaN NaN

有没有简单的方法来获取 Dataframe ....?

最佳答案

您可以使用 DataFrame 构造函数将 genre_list 的值转换为 numpy array by values然后到 list:

df1 = pd.DataFrame(genre_list.values.tolist(), index=genre_list.index)
print (df1)

0 1 2 3 4
0 Action Adventure Fantasy Sci-Fi None
1 Action Adventure Fantasy None None
2 Action Adventure Thriller None None
3 Action Thriller None None None
4 Documentary None None None None
5 Action Adventure Sci-Fi None None
6 Action Adventure Romance None None
7 Adventure Animation Comedy Family Fantasy
8 Action Adventure Sci-Fi None None
9 Adventure Family Fantasy Mystery None
10 Action Adventure Sci-Fi None None
11 Action Adventure Sci-Fi None None

如果需要将None替换为NaN:

df1 = pd.DataFrame(genre_list.values.tolist(), index=genre_list.index).replace({None:np.nan})
print (df1)
0 1 2 3 4
0 Action Adventure Fantasy Sci-Fi NaN
1 Action Adventure Fantasy NaN NaN
2 Action Adventure Thriller NaN NaN
3 Action Thriller NaN NaN NaN
4 Documentary NaN NaN NaN NaN
5 Action Adventure Sci-Fi NaN NaN
6 Action Adventure Romance NaN NaN
7 Adventure Animation Comedy Family Fantasy
8 Action Adventure Sci-Fi NaN NaN
9 Adventure Family Fantasy Mystery NaN
10 Action Adventure Sci-Fi NaN NaN
11 Action Adventure Sci-Fi NaN NaN

另一个较慢的解决方案是apply Series:

df1 = genre_list.apply(pd.Series)
0 1 2 3 4
0 Action Adventure Fantasy Sci-Fi NaN
1 Action Adventure Fantasy NaN NaN
2 Action Adventure Thriller NaN NaN
3 Action Thriller NaN NaN NaN
4 Documentary NaN NaN NaN NaN
5 Action Adventure Sci-Fi NaN NaN
6 Action Adventure Romance NaN NaN
7 Adventure Animation Comedy Family Fantasy
8 Action Adventure Sci-Fi NaN NaN
9 Adventure Family Fantasy Mystery NaN
10 Action Adventure Sci-Fi NaN NaN
11 Action Adventure Sci-Fi NaN NaN

时间:

#[12000 rows]
genre_list = pd.concat([genre_list]*1000).reset_index(drop=True)

In [115]: %timeit pd.DataFrame(genre_list.values.tolist(), index=genre_list.index).replace({None:np.nan})
100 loops, best of 3: 15.7 ms per loop

In [116]: %timeit df1 = genre_list.apply(pd.Series)
1 loop, best of 3: 1.96 s per loop

关于python - 在 List 中具有不同大小的 List 的 pandas 中制作 DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43134198/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com