- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在 Python 3.4 中使用 numpy 和矩阵构建一个神经网络草图,以学习简单的 XOR。我的符号如下:
a 是神经元的事件
z 是一个神经元的输入
W 是一个权重矩阵,大小为 R^{#上一层的神经元数}x{#下一层的神经元数}
B 是偏置值的向量
在 python 中实现了一个非常简单的网络后,仅在单个输入向量上训练时一切正常。然而,当对 XOR 的所有四个训练示例进行训练时,误差函数表现出非常奇怪的行为(见图)并且网络的输出始终约为 0.5。更改网络大小、学习率或训练周期似乎没有帮助。
这是网络的代码:
import numpy as np
import time
import matplotlib.pyplot as plt
Js = []
start = time.time()
np.random.seed(2)
#Sigmoid
def activation(x, derivative = False):
if(derivative):
a = activation(x)
return a * (1 - a)
else:
return 1/(1+np.exp(-x))
def cost(output, target):
return (1/2) * np.sum((target - output)**2)
INPUTS = np.array([
[0, 1],
[1, 0],
[0, 0],
[1, 1],
])
TARGET = np.array([
[1],
[1],
[0],
[0],
])
"Hyper-Parameters"
# Layer Structure
LAYER = [2, 3, 1]
LEARNING_RATE = 0.1
ITERATIONS = int(1e3)
# Init Weights
W1 = np.random.rand(LAYER[0], LAYER[1])
W2 = np.random.rand(LAYER[1], LAYER[2])
# Init Biases
B1 = np.random.rand(LAYER[1], 1)
B2 = np.random.rand(LAYER[2], 1)
for i in range(0, ITERATIONS):
exampleIndex = i % len(INPUTS)
#exampleIndex = 2
"Forward Pass"
# Layer One Activity (Input layer)
A0 = np.transpose(INPUTS[exampleIndex:exampleIndex+1])
# Layer Two Activity (Hidden Layer)
Z1 = np.dot(np.transpose(W1), A0) + B1
A1 = activation(Z1)
# Layer Three Activity (Output Layer)
Z2 = np.dot(np.transpose(W2), A1) + B2
A2 = activation(Z2)
# Output
O = A2
# Cost J
# Target Vector T
T = np.transpose(TARGET[exampleIndex:exampleIndex+1])
J = cost(O, T)
Js.append(J)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
"Backward Pass"
# Calculate Delta of output layer
D2 = (O - T) * activation(Z2, True)
# Calculate Delta of hidden layer
D1 = np.dot(W2, D2) * activation(Z1, True)
# Calculate Derivatives w.r.t. W2
DerW2 = np.dot(A1, np.transpose(D2))
# Calculate Derivatives w.r.t. W1
DerW1 = np.dot(A0, np.transpose(D1))
# Calculate Derivatives w.r.t. B2
DerB2 = D2
# Calculate Derivatives w.r.t. B1
DerB1 = D1
"Update Weights and Biases"
W1 -= LEARNING_RATE * DerW1
B1 -= LEARNING_RATE * DerB1
W2 -= LEARNING_RATE * DerW2
B2 -= LEARNING_RATE * DerB2
# Show prediction
print("Time elapsed {}s".format(time.time() - start))
plt.plot(Js)
plt.ylabel("Cost J")
plt.xlabel("Iterations")
plt.show()
我的实现中出现这种奇怪行为的原因可能是什么?
最佳答案
我认为您的成本函数正在跳跃,因为您在每个样本后执行权重更新。然而,您的网络仍然在训练正确的行为:
479997
J = 4.7222501603409765e-05
I = [[1]
[0]], O = [[ 0.99028172]]
T = [[1]]
479998
J = 7.3205311398742e-05
I = [[0]
[0]], O = [[ 0.01210003]]
T = [[0]]
479999
J = 4.577485181547362e-05
I = [[1]
[1]], O = [[ 0.00956816]]
T = [[0]]
480000
J = 4.726257702199439e-05
I = [[0]
[1]], O = [[ 0.9902776]]
T = [[1]]
成本函数表现出一些有趣的行为:训练过程达到一个点,成本函数中的跳跃将变得非常小。您可以使用下面的代码重现它(我只做了细微的改动;请注意,我训练了更多的时期):
import numpy as np
import time
import matplotlib.pyplot as plt
Js = []
start = time.time()
np.random.seed(2)
#Sigmoid
def activation(x, derivative = False):
if(derivative):
a = activation(x)
return a * (1 - a)
else:
return 1/(1+np.exp(-x))
def cost(output, target):
return (1/2) * np.sum((target - output)**2)
INPUTS = np.array([[0, 1],[1, 0],[0, 0],[1, 1]])
TARGET = np.array([[1],[1],[0],[0]])
"Hyper-Parameters"
# Layer Structure
LAYER = [2, 3, 1]
LEARNING_RATE = 0.1
ITERATIONS = int(5e5)
# Init Weights
W1 = np.random.rand(LAYER[0], LAYER[1])
W2 = np.random.rand(LAYER[1], LAYER[2])
# Init Biases
B1 = np.random.rand(LAYER[1], 1)
B2 = np.random.rand(LAYER[2], 1)
for i in range(0, ITERATIONS):
exampleIndex = i % len(INPUTS)
# exampleIndex = 2
"Forward Pass"
# Layer One Activity (Input layer)
A0 = np.transpose(INPUTS[exampleIndex:exampleIndex+1])
# Layer Two Activity (Hidden Layer)
Z1 = np.dot(np.transpose(W1), A0) + B1
A1 = activation(Z1)
# Layer Three Activity (Output Layer)
Z2 = np.dot(np.transpose(W2), A1) + B2
A2 = activation(Z2)
# Output
O = A2
# Cost J
# Target Vector T
T = np.transpose(TARGET[exampleIndex:exampleIndex+1])
J = cost(O, T)
Js.append(J)
# print("J = {}".format(J))
# print("I = {}, O = {}".format(A0, O))
# print("T = {}".format(T))
if ((i+3) % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
if ((i+2) % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
if ((i+1) % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
if (i % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
"Backward Pass"
# Calculate Delta of output layer
D2 = (O - T) * activation(Z2, True)
# Calculate Delta of hidden layer
D1 = np.dot(W2, D2) * activation(Z1, True)
# Calculate Derivatives w.r.t. W2
DerW2 = np.dot(A1, np.transpose(D2))
# Calculate Derivatives w.r.t. W1
DerW1 = np.dot(A0, np.transpose(D1))
# Calculate Derivatives w.r.t. B2
DerB2 = D2
# Calculate Derivatives w.r.t. B1
DerB1 = D1
"Update Weights and Biases"
W1 -= LEARNING_RATE * DerW1
B1 -= LEARNING_RATE * DerB1
W2 -= LEARNING_RATE * DerW2
B2 -= LEARNING_RATE * DerB2
# Show prediction
print("Time elapsed {}s".format(time.time() - start))
plt.plot(Js)
plt.ylabel("Cost J")
plt.xlabel("Iterations")
plt.savefig('cost.pdf')
plt.show()
为了减少成本函数的波动,人们通常在执行更新(一些平均更新)之前使用多个数据样本,但我发现这在仅包含四个不同训练事件的集合中很难做到。因此,总结这个相当长的答案:您的成本函数跳跃是因为它是针对每个示例计算的,而不是针对多个示例的平均值计算的。然而,网络输出很好地遵循了 XOR 函数的分布,所以你不需要改变它。
关于python - 简单的非面向对象神经网络的成本 "jumping",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43457429/
这与 Payubiz payment gateway sdk 关系不大一体化。但是,主要问题与构建项目有关。 每当我们尝试在模拟器上运行应用程序时。我们得到以下失败: What went wrong:
我有一个现有的应用程序,其中包含在同一主机上运行的 4 个 docker 容器。它们已使用 link 命令链接在一起。 然而,在 docker 升级后,link 行为已被弃用,并且似乎有所改变。我们现
在 Internet 模型中有四层:链路 -> 网络 -> 传输 -> 应用程序。 我真的不知道网络层和传输层之间的区别。当我读到: Transport layer: include congesti
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
前言: 生活中,我们在上网时,打开一个网页,就可以看到网址,如下: https😕/xhuahua.blog.csdn.net/ 访问网站使用的协议类型:https(基于 http 实现的,只不过在
网络 避免网络问题降低Hadoop和HBase性能的最重要因素可能是所使用的交换硬件,在项目范围的早期做出的决策可能会导致群集大小增加一倍或三倍(或更多)时出现重大问题。 需要考虑的重要事项:
网络 网络峰值 如果您看到定期的网络峰值,您可能需要检查compactionQueues以查看主要压缩是否正在发生。 有关管理压缩的更多信息,请参阅管理压缩部分的内容。 Loopback IP
Pure Data 有一个 loadbang 组件,它按照它说的做:当图形开始运行时发送一个 bang。 NoFlo 的 core/Kick 在其 IN 输入被击中之前不会发送其数据,并且您无法在 n
我有一台 Linux 构建机器,我也安装了 minikube。在 minikube 实例中,我安装了 artifactory,我将使用它来存储各种构建工件 我现在希望能够在我的开发机器上做一些工作(这
我想知道每个视频需要多少种不同的格式才能支持所有主要设备? 在我考虑的主要设备中:安卓手机 + iPhone + iPad . 对具有不同比特率的视频进行编码也是一种好习惯吗? 那里有太多相互矛盾的信
我有一个使用 firebase 的 Flutter Web 应用程序,我有两个 firebase 项目(dev 和 prod)。 我想为这个项目设置 Flavors(只是网络没有移动)。 在移动端,我
我正在读这篇文章Ars article关于密码安全,它提到有一些网站“在传输之前对密码进行哈希处理”? 现在,假设这不使用 SSL 连接 (HTTPS),a.这真的安全吗? b.如果是的话,你会如何在
我试图了解以下之间的关系: eth0在主机上;和 docker0桥;和 eth0每个容器上的接口(interface) 据我了解,Docker: 创建一个 docker0桥接,然后为其分配一个与主机上
我需要编写一个java程序,通过网络将对象发送到客户端程序。问题是一些需要发送的对象是不可序列化的。如何最好地解决这个问题? 最佳答案 发送在客户端重建对象所需的数据。 关于java - 不可序列化对
所以我最近关注了this有关用 Java 制作基本聊天室的教程。它使用多线程,是一个“面向连接”的服务器。我想知道如何使用相同的 Sockets 和 ServerSockets 来发送对象的 3d 位
我想制作一个系统,其中java客户端程序将图像发送到中央服务器。中央服务器保存它们并运行使用这些图像的网站。 我应该如何发送图像以及如何接收它们?我可以使用同一个网络服务器来接收和显示网站吗? 最佳答
我正在尝试设置我的 rails 4 应用程序,以便它发送电子邮件。有谁知道我为什么会得到: Net::SMTPAuthenticationError 534-5.7.9 Application-spe
我正在尝试编写一个简单的客户端-服务器程序,它将客户端计算机连接到服务器计算机。 到目前为止,我的代码在本地主机上运行良好,但是当我将客户端代码中的 IP 地址替换为服务器计算机的本地 IP 地址时,
我需要在服务器上并行启动多个端口,并且所有服务器套接字都应在 socket.accept() 上阻塞。 同一个线程需要启动客户端套接字(许多)来连接到特定的 ServerSocket。 这能实现吗?
我的工作执行了大约 10000 次以下任务: 1) HTTP 请求(1 秒) 2)数据转换(0.3秒) 3)数据库插入(0.7秒) 每次迭代的总时间约为 2 秒,分布如上所述。 我想做多任务处理,但我
我是一名优秀的程序员,十分优秀!