- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我只是运行一个简单的代码,想在训练后获得准确率。我加载了我保存的模型,但是当我想要获得准确性时,我出错了。为什么?
# coding=utf-8
from color_1 import read_and_decode, get_batch, get_test_batch
import AlexNet
import cv2
import os
import time
import numpy as np
import tensorflow as tf
import AlexNet_train
import math
batch_size=128
num_examples = 1000
crop_size=56
def evaluate(test_x, test_y):
image_holder = tf.placeholder(tf.float32, [batch_size, 56, 56, 3], name='x-input')
label_holder = tf.placeholder(tf.int32, [batch_size], name='y-input')
y = AlexNet.inference(image_holder,evaluate,None)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(label_holder,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
coord = tf.train.Coordinator()
sess.run(init_op)
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
ckpt=tf.train.get_checkpoint_state(AlexNet_train.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
saver.restore(sess, os.path.join(AlexNet_train.MODEL_SAVE_PATH, ckpt_name))
print('Loading success, global_step is %s' % global_step)
step=0
image_batch, label_batch = sess.run([test_x, test_y])
accuracy_score=sess.run(accuracy,feed_dict={image_holder: image_batch,
label_holder: label_batch})
print("After %s training step(s),validation "
"precision=%g" % (global_step, accuracy_score))
coord.request_stop()
coord.join(threads)
def main(argv=None):
test_image, test_label = read_and_decode('val.tfrecords')
test_images, test_labels = get_test_batch(test_image, test_label, batch_size, crop_size)
evaluate(test_images, test_labels)
if __name__=='__main__':
tf.app.run()
这里是错误,它说我代码中的这一行是错误的:“correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(label_holder,1))”
Traceback (most recent call last):
File "/home/vrview/tensorflow/example/char/tfrecords/AlexNet/Alex_save/AlexNet_test.py", line 80, in <module>
tf.app.run()
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/home/vrview/tensorflow/example/char/tfrecords/AlexNet/Alex_save/AlexNet_test.py", line 76, in main
evaluate(test_images, test_labels)
File "/home/vrview/tensorflow/example/char/tfrecords/AlexNet/Alex_save/AlexNet_test.py", line 45, in evaluate
label_holder: label_batch})
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 965, in _run
feed_dict_string, options, run_metadata)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1015, in _do_run
target_list, options, run_metadata)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1035, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected dimension in the range [-1, 1), but got 1
[[Node: ArgMax_1 = ArgMax[T=DT_INT32, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_y-input_0, ArgMax_1/dimension)]]
Caused by op u'ArgMax_1', defined at:
File "/home/vrview/tensorflow/example/char/tfrecords/AlexNet/Alex_save/AlexNet_test.py", line 80, in <module>
tf.app.run()
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/home/vrview/tensorflow/example/char/tfrecords/AlexNet/Alex_save/AlexNet_test.py", line 76, in main
evaluate(test_images, test_labels)
File "/home/vrview/tensorflow/example/char/tfrecords/AlexNet/Alex_save/AlexNet_test.py", line 22, in evaluate
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(label_holder,1))
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py", line 263, in argmax
return gen_math_ops.arg_max(input, axis, name)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 168, in arg_max
name=name)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 763, in apply_op
op_def=op_def)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2395, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/vrview/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1264, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Expected dimension in the range [-1, 1), but got 1
[[Node: ArgMax_1 = ArgMax[T=DT_INT32, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_y-input_0, ArgMax_1/dimension)]]
如何解决?
最佳答案
参与this answer与这里的问题相关:
axis: A Tensor. Must be one of the following types: int32, int64. int32, 0 <= axis < rank(input). Describes which axis of the input Tensor to reduce across.
看来,在张量的最后一个轴上运行 argmax
的唯一方法是给它 axis=-1
,因为“严格小于”在函数定义中签名。
关于python - Tensorflow:我在准确性上出错了,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44581910/
我使用以下代码来查看用户在特定页面上的停留时间。我为此脚本使用了带有 src 属性的隐藏图像: $timer_seconds = 1; while(!connection_aborted()) {
我在 Keras 中使用自定义损失函数: def get_top_one_probability(vector): return (K.exp(vector) / K.sum(K.exp(vect
当我使用 long 来节省一个月毫秒时,我发现一个问题。但我打印负数。所以我做了一个测试 代码如下: LogUtils.d(TAG, "long max time:"+Long.MAX_VALUE);
关于使用 Lenet5 网络解释某些优化器在 MNIST 上的性能,我有几个问题,以及验证损失/准确性与训练损失/准确性图表究竟告诉我们什么。所以一切都是在 Keras 中使用标准的 LeNet5 网
我有 1000 个 pdf(每个 200 页)。 我需要将每个 pdf 添加到 Azure 搜索索引中的索引(作为小文本 block 和相关元数据,例如每个 pdf 200 个 block ) 已达到
我必须在 mssql 数据库中存储一些间隔。我知道日期时间的准确性约为。 3.3ms(只能结束0、3、7)。但是当我计算日期时间之间的间隔时,我发现结果只能以 0、3 和 6 结尾。所以我总结的间隔越
我想制作一个需要将位置精确到大约 1m 或更小的 Android 应用程序。“Fused Location Manager API”是否足够好,或者 GPS 永远不会如此准确,无论是否与其他传感器融合
我想使用 pySerial 的 serial.tools.list_ports.comports() 列出可用的 COM 端口。 阅读documentation : The function retu
使用 pyomo 和 glpk 求解器,我定义了以下目标规则: def cost_rule(m): return (sum(m.rd[i]*m.pRdImp*m.dt - m.vr[i]*m.
我正在遵循“Lucene in Action”中的示例,第 308-315 页,它描述了 Lucene Spatial。我正在使用 lucene 2.9.4。我用过 http://geocoder.u
我一直在试验各种计时方法的代码。创建延迟的一种方法是使用thread.sleep(millis)运行线程,但可以很好地说明,线程“唤醒”的时间并不完全准确,可能在这个时间之前或之后。然后我遇到一个定义
我在使用 boost::sleep() 函数时遇到奇怪的问题。我有这个基本代码: #include #include #include void thread_func() { time
数字示例 我正在使用标准的 pytesseract img 来发送文本。我尝试过仅使用数字选项,90% 的情况下它是完美的,但上面是一个非常错误的例子!这个例子根本没有产生任何字符 如您所见,现在有字
我想从 python 中的图像中提取文本.为了做到这一点,我选择了 pytesseract .当我尝试从图像中提取文本时,结果并不令人满意。我也经历过this并实现了列出的所有技术。然而,它的表现似乎
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我想为我的移动项目需求之一实现条形码。要存储的数据量非常少(<25 个字母数字)。我想知道对于这个项目实现一维条形码或二维条形码(特别是二维码)是否更明智。如果有人能从 1d 与 2d 的角度对我进行
想象一个二元分类问题。假设我在 pred_test 中存储了 800,000 个预测概率。我将 cutoff 定义为 pred_test 中的任何值,以便大于或等于 cutoff 的值被分配值 1 和
已关闭。此问题需要 debugging details 。目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and the
我正在使用 iBeacon 和 Altbeacon 测试定位系统。我发现我的三角测量结果实际上非常准确,但有时需要 5 秒以上才能看到正确的结果。 例如,假设我目前正站在A点。 Altbeacon +
因此,我有 2 个独立的数据表,它们看起来非常相同,但它们行中的值可能不同。 编辑: 我可以通过创建一个可以用作主键的临时标识列来获得唯一 ID,如果这样做更容易的话。所以将 ID 列视为主键。 表A
我是一名优秀的程序员,十分优秀!