- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
这是我在使用该网站一段时间后第一次在 StackOverflow 上发帖。
我一直在尝试从此链接预测练习机器学习数据库的最后一列 http://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008#
我运行下面的代码并收到此错误:
追溯(最近的调用最后):
文件“”,第 1 行,位于 runfile('/Users/ric4711/diabetes_tensorflow', wdir='/Users/ric4711')
运行文件中的文件“/Users/ric4711/anaconda/lib/python2.7/site-packages/spyder/utils/site/sitecustomize.py”,第 880 行 execfile(文件名,命名空间)
文件“/Users/ric4711/anaconda/lib/python2.7/site-packages/spyder/utils/site/sitecustomize.py”,第 94 行,在 execfile 中 builtins.execfile(filename, *where)
文件“/Users/ric4711/diabetes_tensorflow”,第 60 行,位于 y_train = to_categorical(y_train, num_classes = num_classes)
文件“/Users/ric4711/anaconda/lib/python2.7/site-packages/keras/utils/np_utils.py”,第 25 行,to_categorical 分类 [np.arange(n), y] = 1
IndexError:索引 3 超出尺寸为 3 的轴 1 的范围
我怀疑我的 y 轴尺寸或我为此管理类别的方式可能存在问题。任何帮助将不胜感激。
from pandas import read_csv
import numpy
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
from keras.layers import Dense, Input
from keras.models import Model
dataset = read_csv(r"/Users/ric4711/Documents/dataset_diabetes/diabetic_data.csv", header=None)
#Column 2, 5, 10, 11, 18, 19, 20 all have "?"
#(101767, 50) size of dataset
#PROBLEM COLUMNS WITH NUMBER OF "?"
#2 2273
#5 98569
#10 40256
#11 49949
#18 21
#19 358
#20 1423
le=LabelEncoder()
dataset[[2,5,10,11,18,19,20]] = dataset[[2,5,10,11,18,19,20]].replace("?", numpy.NaN)
dataset = dataset.drop(dataset.columns[[0, 1, 5, 10, 11]], axis=1)
dataset.dropna(inplace=True)
y = dataset[[49]]
X = dataset.drop(dataset.columns[[44]], 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
for col in X_test.columns.values:
if X_test[col].dtypes=='object':
data=X_train[col].append(X_test[col])
le.fit(data.values)
X_train[col]=le.transform(X_train[col])
X_test[col]=le.transform(X_test[col])
for col in y_test.columns.values:
if y_test[col].dtypes=='object':
data=y_train[col].append(y_test[col])
le.fit(data.values)
y_train[col]=le.transform(y_train[col])
y_test[col]=le.transform(y_test[col])
batch_size = 500
num_epochs = 300
hidden_size = 250
num_test = X_test.shape[0]
num_training = X_train.shape[0]
height, width, depth = 1, X_train.shape[1], 1
num_classes = 3
y_train = y_train.as_matrix()
y_test = y_test.as_matrix()
y_train = to_categorical(y_train, num_classes = num_classes)
y_test = to_categorical(y_test, num_classes = num_classes)
inp = Input(shape=(height * width,))
hidden_1 = Dense(hidden_size, activation='tanh')(inp)
hidden_2 = Dense(hidden_size, activation='tanh')(hidden_1)
hidden_3 = Dense(hidden_size, activation='tanh')(hidden_2)
hidden_4 = Dense(hidden_size, activation='tanh')(hidden_3)
hidden_5 = Dense(hidden_size, activation='tanh')(hidden_4)
hidden_6 = Dense(hidden_size, activation='tanh')(hidden_5)
hidden_7 = Dense(hidden_size, activation='tanh')(hidden_6)
hidden_8 = Dense(hidden_size, activation='tanh')(hidden_7)
hidden_9 = Dense(hidden_size, activation='tanh')(hidden_8)
hidden_10 = Dense(hidden_size, activation='tanh')(hidden_9)
hidden_11 = Dense(hidden_size, activation='tanh')(hidden_10)
out = Dense(num_classes, activation='softmax')(hidden_11)
model = Model(inputs=inp, outputs=out)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, y_train, batch_size = batch_size,epochs = num_epochs, validation_split = 0.1, shuffle = True)
model.evaluate(X_test, y_test, verbose=1)
最佳答案
我通过将 num_classes 更改为 4 并在 .fit 方法中应用 numpy.array(X_train)、numpy.array(y_train) 来修复此问题
关于python - csv 数据库的 Keras 索引越界错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45015755/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!