- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我已经在 Reddit、Stack Overflow、技术论坛、文档、GitHub 问题等上查找过这个问题,但仍然无法解决这个问题。
作为引用,我在 Windows 10 64 位上使用 Python 3 TensorFlow
。
我正在尝试在 Tensorflow
中使用我自己的数据集(300 张猫图片,512x512,.png 格式)来训练它了解猫的样子。如果这可行,我将用其他动物和最终物体训练它。
我似乎无法弄清楚为什么会出现错误 ValueError: too many values to unpack (expected 2)
。错误出现在 images,labal = create_batches(10)
行中,它指向我的函数 create_batches
(见下文)。我不知道是什么原因造成的,因为我是 TensorFlow
的新手。我正在尝试基于 MNIST 数据集制作自己的神经网络。代码如下:
import tensorflow as tf
import numpy as np
import os
import sys
import cv2
content = []
labels_list = []
with open("data/cats/files.txt") as ff:
for line in ff:
line = line.rstrip()
content.append(line)
with open("data/cats/labels.txt") as fff:
for linee in fff:
linee = linee.rstrip()
labels_list.append(linee)
def create_batches(batch_size):
images = []
for img in content:
#f = open(img,'rb')
#thedata = f.read().decode('utf8')
thedata = cv2.imread(img)
thedata = tf.contrib.layers.flatten(thedata)
images.append(thedata)
images = np.asarray(images)
labels =tf.convert_to_tensor(labels_list,dtype=tf.string)
print(content)
#print(labels_list)
while(True):
for i in range(0,298,10):
yield images[i:i+batch_size],labels_list[i:i+batch_size]
imgs = tf.placeholder(dtype=tf.float32,shape=[None,262144])
lbls = tf.placeholder(dtype=tf.float32,shape=[None,10])
W = tf.Variable(tf.zeros([262144,10]))
b = tf.Variable(tf.zeros([10]))
y_ = tf.nn.softmax(tf.matmul(imgs,W) + b)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(lbls * tf.log(y_),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for i in range(10000):
images,labal = create_batches(10)
sess.run(train_step, feed_dict={imgs:images, lbls: labal})
correct_prediction = tf.equal(tf.argmax(y_,1),tf.argmax(lbls,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print(sess.run(accuracy, feed_dict={imgs:content, lbls:labels_list}))
错误:
Traceback (most recent call last):
File "B:\Josh\Programming\Python\imgpredict\predict.py", line 54, in <module>
images,labal = create_batches(2)
ValueError: too many values to unpack (expected 2)
libpng warning: iCCP: known incorrect sRGB profile
libpng warning: iCCP: known incorrect sRGB profile
libpng warning: iCCP: known incorrect sRGB profile
libpng warning: iCCP: known incorrect sRGB profile
(A few hundred lines of this)
libpng warning: iCCP: known incorrect sRGB profile
libpng warning: iCCP: known incorrect sRGB profile
libpng warning: iCCP: known incorrect sRGB profile
我的 GitHub link如果有人需要,请链接。项目文件夹是“imgpredict”。
最佳答案
您以错误的方式产生结果:
yield(images[i:i+batch_size]) #,labels_list[i:i+batch_size])
它给你一个产生的值,但是当你调用你的方法时,你期望产生两个值:
images,labal = create_batches(10)
要么产生两个值,例如:
yield (images[i:i+batch_size] , labels_list[i:i+batch_size])
(取消注释)或只期待一个。
编辑:您应该在产量和接收结果时使用括号,如下所示:
#when yielding, remember that yield returns a Generator, therefore the ()
yield (images[i:i+batch_size] , labels_list[i:i+batch_size])
#When receiving also, even though this is not correct
(images,labal) = create_batches(10)
但是这不是我使用yield
选项的方式;通常会遍历您返回生成器的方法,在您的情况下,它应该看起来像这样:
#do the training several times as you have
for i in range(10000):
#now here you should iterate over your generator, in order to gain its benefits
#that is you dont load the entire result set into memory
#remember to receive with () as mentioned
for (images, labal) in create_batches(10):
#do whatever you want with that data
sess.run(train_step, feed_dict={imgs:images, lbls: labal})
您还可以检查this关于 yield
和生成器的用户的问题。
关于python - Tensorflow 值错误 : Too many vaues to unpack (expected 2),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45022315/
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我是脚本新手。如何编写 Expect 脚本以通过 ssh 连接到设备并提示用户输入密码?我们使用 pin + RSA token 代码作为密码,因此我无法存储密码。 #!/usr/bin/expect
我编写了以下代码并尝试执行它。但我在执行 do {”时遇到“无效的命令名称“do”” 代码: #!/usr/bin/expect set val 0; set input 5; do { pu
我已经查看了 Expect 联机帮助页并用 Google 搜索了它,但我还没有找到 expect 的 -r 是什么。我看到这个选项以前是这样用的 expect -r "\r\n\r\n" 在 expe
我的 shebang 看起来像这样: #!/usr/bin/expect -d 当我从命令行运行脚本时,它会提供我想要的内容。 但是,我通过 crontab 运行这个脚本。是否可以将调试开关保持打开状
我是 Expect 脚本的新手。 我在 Linux 机器上为 ssh 编写了一个 Expect 脚本,在那里我在 ssh 到不同的 Linux 机器时遇到了问题。下面我复制了脚本。 !/usr/loc
Scene 1, Layer 'script', Frame 1, Line 9 1084: Syntax error: expecting identifier before this. Sc
我正在运行调试命令以将命令的输出记录到文件中。我尝试了 log_file 命令,但它没有记录输出。我的代码如下: log_file -a gdb.txt send "~/debugulator.sh
我希望 expect_user 有一个无限的(或非常大的)超时和 expect 的默认超时。有没有办法设置不同的超时?或者我是否只需要在每次更改用途之前手动执行此操作? 最佳答案 expect 和ex
我正在学习 iOS 编程(我来自 Android),我正在寻找更容易获取字符串的方法。有了这个建议,我定义了下一个宏并在一些代码片段中使用它: #define STRING_BASE @"InfoPl
你好我是 rspec 的新手,我想弄清楚将 block 传递给 expect{} 和只使用 expect() 之间的区别 这是一个简单的例子 require "rails_helper" RSpec.
我正在尝试为 React JS 运行单元测试 - 使用 jest/enzyme。 目前测试失败。不太清楚为什么,也许我没有正确调用 expect(wrapper.find)。这是我测试的一部分: F
例如,现在我有一个“root.exp”期望脚本如下: spawn ssh user@ip expect "Password:" send "password" 然后,我要发送到这个ssh服务器的exp
您好,我是 Expect 脚本编写的新手,我一直在尝试使用以下方法将 IP 地址获取到变量中: set timeout -1 spawn $env(SHELL) match_max 100000 se
expect.anything() 不适用于 expect.toBe(),但适用于 expect.toEqual() test("this will pass", () => { expect("
我有一个如下所示的简单脚本,从命令行读取 2 个数字并将它们加在一起: $cat runexp.sh #!/bin/bash echo "read 1st number" read n1 echo "
当 Linux 机器的 $IP 登录后询问密码时,下面的 expect 脚本工作正常 但在某些情况下,某些Linux机器不需要ssh密码(我们可以不用密码登录), 所以我需要更改我的期望脚本以支持没有
我正在尝试使用 expect 远程登录服务器并更改用户密码。该应用程序要求,如果您要更改的密码包含特殊字符,则将其引用。问题是,还需要引用 expect send 语句,当我尝试将两者结合起来时,脚本
下面这个简单的 expect 脚本的目标是获取远程机器上的 hostname 名称 有时期望脚本无法执行到 $IP_ADDRESS 的 ssh(因为远程机器不活动等) 所以在这种情况下,expect
我试图创建一个宏来替换, first: Some(first.as_ref().parse::().expect("Could not parse 'first'")) 我在其他模块(如 Clap w
我是一名优秀的程序员,十分优秀!