gpt4 book ai didi

python - Pandas 在 iloc Nulls 上设置值

转载 作者:太空宇宙 更新时间:2023-11-04 02:44:34 26 4
gpt4 key购买 nike

我在下面有一个示例数据框和函数。我创建了一个函数,它将获取“单元格”的坐标并将其放入一个元组中,以及将其放在那里的原因。我希望此函数也可以更改特定列的值。

import pandas as pd
import numpy as np
df1 = pd.DataFrame({'A' : [np.NaN,np.NaN,3,4,5,5,3,1,5,np.NaN],
'B' : [1,0,3,5,0,0,np.NaN,9,0,0],
'C' : [10,0,30,50,0,0,4,10,1,0],
'D' : [1,0,3,4,0,0,7,8,0,1],
'E' : [np.nan,'Unassign','Assign','Ugly','Appreciate',
'Undo','Assign','Unicycle','Assign','Unicorn',]})
print(df1)
highlights = []
def find_nan(list_col):
for c in list_col:
# if column is one of the dataframe's columns, go
if c in df1.columns:
# for each index x where column c of the dataframe is null, go
for x in df1.loc[df1[c].isnull()].index: #appends to the list of tuples
highlights.append(
tuple([x + 2, df1.columns.get_loc(c) + 1, f'{c} is Null in row {x + 2}']))

df1.iloc[x, df1.columns.get_loc('E')] = f'{c} is blank in row {x + 2}'
find_nan(['A','B'])
# using the function above, checks for all nulls in A and B
# Also places the coordinates and reason in a tuple and changes values of column 'E'

#output:
A B C D E
0 NaN 1.0 10 1 A is blank in row 2
1 NaN 0.0 0 0 A is blank in row 3
2 3.0 3.0 30 3 Assign
3 4.0 5.0 50 4 Ugly
4 5.0 0.0 0 0 Appreciate
5 5.0 0.0 0 0 Undo
6 3.0 NaN 4 7 Assign
7 1.0 9.0 10 8 Unicycle
8 5.0 0.0 1 0 Assign
9 NaN 0.0 0 1 A is blank in row 11

我想做的是添加逻辑,如果 E 已经填充,则将原因加在一起,或者如果为 null,则简单地更改 E 的值。这是我的问题:使用 df1.iloc 我似乎无法检查空值。

df1.iloc[0]['E'].isnull() 返回 AttributeError: 'float' object has no attribute 'isnull'(显然)

解决这个问题:我可以使用 if np.isnan(df1.iloc[0]['E']),它的计算结果为 True,但如果有是 E 中已有的值 我将得到一个 TypeError

基本上我想要的是我的函数中的这种逻辑:

if df1.iloc[x]['E'] is null:
df1.iloc[x, df1.columns.get_loc('E')] = 'PREVIOUS_VALUE' + f'{c} is blank in row {x + 2}'
else:
df1.iloc[x, df1.columns.get_loc('E')] = f'{c} is blank in row {x + 2}

我的函数在原始数据帧上的预期输出:

find_nan(['A','B'])

A B C D E
0 NaN 1.0 10 1 A is blank in row 2
1 NaN 0.0 0 0 Unassign and A is blank in row 3
2 3.0 3.0 30 3 Assign
3 4.0 5.0 50 4 Ugly
4 5.0 0.0 0 0 Appreciate
5 5.0 0.0 0 0 Undo
6 3.0 NaN 4 7 Assign and B is blank in row 8
7 1.0 9.0 10 8 Unicycle
8 5.0 0.0 1 0 Assign
9 NaN 0.0 0 1 Unicorn and A is blank in row 11

使用 Python 3.6。这是具有更多功能的更大项目的一部分,因此“添加原因”和“无明显原因”向索引添加 2

最佳答案

请注意,这是使用 Python 2 测试的,但我没有注意到任何会防止它在 Python 3 中工作。

def find_nan(df, cols):
if isinstance(cols, (str, unicode)):
cols = [cols] # Turn a single column into an list.
nulls = df[cols].isnull() # Find all null values in requested columns.
df['E'] = df['E'].replace(np.nan, "") # Turn NaN values into an empty string.
for col in cols:
if col not in df:
continue
# If null value in the column an existing value in column `E`, add " and ".
df.loc[(nulls[col] & df['E'].str.len().astype(bool)), 'E'] += ' and '
# For null column values, add to column `E`: "[Column name] is blank in row ".
df.loc[nulls[col], 'E'] += '{} is blank in row '.format(col)
# For null column values, add to column `E` the index location + 2.
df.loc[nulls[col], 'E'] += (df['E'][nulls[col]].index + 2).astype(str)
return df

>>> find_nan(df1, ['A', 'B'])
A B C D E
0 NaN 1 10 1 A is blank in row 2
1 NaN 0 0 0 Unassign and A is blank in row 3
2 3 3 30 3 Assign
3 4 5 50 4 Ugly
4 5 0 0 0 Appreciate
5 5 0 0 0 Undo
6 3 NaN 4 7 Assign and B is blank in row 8
7 1 9 10 8 Unicycle
8 5 0 1 0 Assign
9 NaN 0 0 1 Unicorn and A is blank in row 11

关于python - Pandas 在 iloc Nulls 上设置值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45511603/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com