- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我研究神经网络有一段时间了,用python和numpy做了一个实现。我用 XOR 做了一个非常简单的例子,它运行良好。所以我想我更进一步尝试 MNIST 数据库。
这是我的问题。我正在使用具有 784 个输入、30 个隐藏神经元和 10 个输出神经元的神经网络。隐藏层的激活函数只会吐出一个,这样网络就基本停止学习了。我所做的数学运算是正确的,相同的实现在 XOR 示例中运行良好,我正在正确读取 MNIST 集。所以我看不出问题出在哪里。
import pickle
import gzip
import numpy as np
def load_data():
f = gzip.open('mnist.pkl.gz', 'rb')
training_data, validation_data, test_data = pickle.load(f, encoding="latin1")
f.close()
return (training_data, validation_data, test_data)
def transform_output(num):
arr = np.zeros(10)
arr[num] = 1.0
return arr
def out2(arr):
return arr.argmax()
data = load_data()
training_data = data[0]
training_input = np.array(training_data[0])
training_output = [transform_output(y) for y in training_data[1]]
batch_size = 10
batch_count = int(np.ceil(len(training_input) / batch_size))
input_batches = np.array_split(training_input, batch_count)
output_batches = np.array_split(training_output, batch_count)
#Sigmoid Function
def sigmoid (x):
return 1.0/(1.0 + np.exp(-x))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
return x * (1.0 - x)
#Variable initialization
epoch=1 #Setting training iterations
lr=2.0 #Setting learning rate
inputlayer_neurons = len(training_input[0]) #number of features in data set
hiddenlayer_neurons = 30 #number of hidden layers neurons
output_neurons = len(training_output[0]) #number of neurons at output layer
#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))
for i in range(epoch):
for batch in range(batch_count):
X = input_batches[batch]
y = output_batches[batch]
zh1 = np.dot(X, wh)
zh = zh1 + bh
# data -> hidden neurons -> activations
ah = sigmoid(zh)
zo1 = np.dot(ah, wout)
zo = zo1 + bout
output = sigmoid(zo)
# data -> output neurons -> error
E = y - output
print("debugging")
print("X")
print(X)
print("WH")
print(wh)
print("zh1")
print(zh1)
print("bh")
print(bh)
print("zh")
print(zh)
print("ah")
print(ah)
print("wout")
print(wout)
print("zo1")
print(zo1)
print("bout")
print(bout)
print("zo")
print(zo)
print("out")
print(output)
print("y")
print(y)
print("error")
print(E)
# data -> output neurons -> slope
slope_out = derivatives_sigmoid(output)
# data -> output neurons -> change of error
d_out = E * slope_out
# data -> hidden neurons -> error = data -> output neurons -> change of error DOT output neurons -> output inputs (equal to hidden neurons) -> weights
error_hidden = d_out.dot(wout.T)
# data -> hidden neurons -> slope
slope_h = derivatives_sigmoid(ah)
# data -> hidden neurons -> change of error
d_hidden = error_hidden * slope_h
# hidden neurons -> output neurons -> weights = "" + hidden neurons -> data -> activations DOT data -> output neurons -> change of error
wout = wout + ah.T.dot(d_out) * lr
bout = bout + np.sum(d_out, axis=0, keepdims=True) * lr
wh = wh + X.T.dot(d_hidden) * lr
bh = bh + np.sum(d_hidden, axis=0, keepdims=True) * lr
# testing results
X = np.array(data[1][0][0:10])
zh1 = np.dot(X, wh)
zh = zh1 + bh
# data -> hidden neurons -> activations
ah = sigmoid(zh)
zo1 = np.dot(ah, wout)
zo = zo1 + bout
output = sigmoid(zo)
print([out2(y) for y in output])
print(data[1][1][0:10])
因此总体而言,神经网络的输出对于每个输入都是相同的,并且使用不同的批量大小、学习率和 100 个 epoch 对其进行训练并没有帮助。
最佳答案
XOR 和 MNIST 问题的区别在于类的数量:XOR 是一种二进制分类,而在 MNIST 中有 10 个类。
您计算的错误 E
适用于 XOR,因为 sigmoid 函数可用于二进制情况。当有超过 2 个类时,你必须使用 softmax function ,它是 sigmoid 的扩展版本,并且 cross entropy loss .看看this question看看区别。您已将 y
正确翻译为 one-hot 编码,但 output
不包含预测的概率分布,实际上包含 10 个值的向量,每个值都非常接近 1.0
。这就是网络不学习的原因。
关于python - 神经网络 MNIST,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46653114/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!