gpt4 book ai didi

python - 将csv.DictReader对象转换为非iter类型的数据并按键合并值

转载 作者:太空宇宙 更新时间:2023-11-04 02:34:45 25 4
gpt4 key购买 nike

在我的数据中:

myData='''pos\tidx1\tval1\tidx2\tval2
11\t4\tC\t6\tA
15\t4\tA\t6\tT
23\t4\tT\t6\tT
28\t4\tA\t3\tG
34\t4\tG\t3\tC
41\t4\tC\t4\tT
51\t4\tC\t4\tC'''

我读取了以标题为键的数据,csv.DictReader。

import csv
import itertools

input_file = csv.DictReader(io.StringIO(myData), delimiter = '\t')
# which produces an iterator

''' Now, I want to group this dictionary by idx2, where
idx2 values is the main key and other have values merged into list that have same keys'''

# This groupby method give me
file_blocks = itertools.groupby(input_file, key=lambda x: x['idx2'])

# I can print this as
for index, blocks in file_blocks:
print(index, list(blocks))

6 [{'val2': 'A', 'val1': 'C', 'idx1': '4', 'pos': '11', 'idx2': '6'}, {'val2': 'T', 'val1': 'A', 'idx1': '4', 'pos': '15', 'idx2': '6'}, {'val2': 'T', 'val1': 'T', 'idx1': '4', 'pos': '23', 'idx2': '6'}]
3 [{'val2': 'G', 'val1': 'A', 'idx1': '4', 'pos': '28', 'idx2': '3'}, {'val2': 'C', 'val1': 'G', 'idx1': '4', 'pos': '34', 'idx2': '3'}]
4 [{'val2': 'T', 'val1': 'C', 'idx1': '4', 'pos': '41', 'idx2': '4'}, {'val2': 'C', 'val1': 'C', 'idx1': '4', 'pos': '51', 'idx2': '4'}]

But, since the output is exhausted I can't print, use it more than once to debug it.

所以,问题 #1:如何将其转换为非 iter 类型的数据。

问题 #2:我如何进一步处理这个 groupby 对象以将值合并到一个列表中,该列表在同一组/ block 中具有公共(public)键。

Something like orderedDict, defaultDict where the order of the way the data is read is preserved:

{'6': defaultdict(<class 'list'>, {'pos': [11, 15, 23], 'idx1': [4, 4, 4], 'val1': ['C', 'A', 'T'], 'idx2': [6, 6, 6], 'val2': ['A', 'T', 'T']})}
{'3': .....
{'4': .....

我尝试过的一些修复:

我宁愿在分组之前通过唯一键准备一个键:[值]:

update_dict = {}
for lines in input_file:
print(type(lines))
for k, v in lines:
update_dict['idx2'] = lines[k,v]

我尝试的另一件事是确定我是否可以合并分组对象中的数据: new_groupBy = {} 对于索引,file_blocks 中的 block : 打印(索引,列表( block )) 对于 block 中的 x: 对于 k,v 在 x 中: 为 new_groupBy 做点什么

最佳答案

因此,对于您的第一个问题,您可以简单地具体化一个列表:

In [9]: raw_data='''pos\tidx1\tval1\tidx2\tval2
...: 11\t4\tC\t6\tA
...: 15\t4\tA\t6\tT
...: 23\t4\tT\t6\tT
...: 28\t4\tA\t3\tG
...: 34\t4\tG\t3\tC
...: 41\t4\tC\t4\tT
...: 51\t4\tC\t4\tC'''

In [10]: data_stream = csv.DictReader(io.StringIO(raw_data), delimiter="\t")

In [11]: grouped = itertools.groupby(data_stream, key=lambda x:x['idx2'])

In [12]: data = [(k,list(g)) for k,g in grouped] # order is important, so use a list

In [13]: data
Out[13]:
[('6',
[{'idx1': '4', 'idx2': '6', 'pos': '11', 'val1': 'C', 'val2': 'A'},
{'idx1': '4', 'idx2': '6', 'pos': '15', 'val1': 'A', 'val2': 'T'},
{'idx1': '4', 'idx2': '6', 'pos': '23', 'val1': 'T', 'val2': 'T'}]),
('3',
[{'idx1': '4', 'idx2': '3', 'pos': '28', 'val1': 'A', 'val2': 'G'},
{'idx1': '4', 'idx2': '3', 'pos': '34', 'val1': 'G', 'val2': 'C'}]),
('4',
[{'idx1': '4', 'idx2': '4', 'pos': '41', 'val1': 'C', 'val2': 'T'},
{'idx1': '4', 'idx2': '4', 'pos': '51', 'val1': 'C', 'val2': 'C'}])]

至于你的第二个问题,尝试类似的东西:

In [15]: import collections

In [16]: def accumulate(data):
...: acc = collections.OrderedDict()
...: for d in data:
...: for k,v in d.items():
...: acc.setdefault(k,[]).append(v)
...: return acc
...:

In [17]: grouped_data = {k:accumulate(d) for k,d in data}

In [18]: grouped_data
Out[18]:
{'3': OrderedDict([('pos', ['28', '34']),
('idx2', ['3', '3']),
('val2', ['G', 'C']),
('val1', ['A', 'G']),
('idx1', ['4', '4'])]),
'4': OrderedDict([('pos', ['41', '51']),
('idx2', ['4', '4']),
('val2', ['T', 'C']),
('val1', ['C', 'C']),
('idx1', ['4', '4'])]),
'6': OrderedDict([('pos', ['11', '15', '23']),
('idx2', ['6', '6', '6']),
('val2', ['A', 'T', 'T']),
('val1', ['C', 'A', 'T']),
('idx1', ['4', '4', '4'])])}

请注意,我使用了列表(和字典)理解。他们的工作方式相似。列表理解等同于:

data = []
for k, g in grouped:
data.append((k, list(g))

尽管我使用的是 OrderedDict,但为了更好的衡量,这里等效于 dict-comprehension,因为在任何情况下,顺序似乎都很重要:

In [20]: grouped_data = collections.OrderedDict()

In [21]: for k, d in data:
...: grouped_data[k] = accumulate(d)
...:

In [22]: grouped_data
Out[22]:
OrderedDict([('6',
OrderedDict([('val2', ['A', 'T', 'T']),
('val1', ['C', 'A', 'T']),
('pos', ['11', '15', '23']),
('idx2', ['6', '6', '6']),
('idx1', ['4', '4', '4'])])),
('3',
OrderedDict([('val2', ['G', 'C']),
('val1', ['A', 'G']),
('pos', ['28', '34']),
('idx2', ['3', '3']),
('idx1', ['4', '4'])])),
('4',
OrderedDict([('val2', ['T', 'C']),
('val1', ['C', 'C']),
('pos', ['41', '51']),
('idx2', ['4', '4']),
('idx1', ['4', '4'])]))])

请注意,我们可以一次完成所有操作,避免创建不必要的数据结构:

import itertools, io, csv, collections

data_stream = csv.DictReader(io.StringIO(raw_data), delimiter="\t")
grouped = itertools.groupby(data_stream, key=lambda x:x['idx2'])

def accumulate(data):
acc = collections.OrderedDict()
for d in data:
for k,v in d.items():
acc.setdefault(k,[]).append(v)
return acc

grouped_data = collections.OrderedDict()
for k, g in grouped:
grouped_data[k] = accumulate(g)

关于python - 将csv.DictReader对象转换为非iter类型的数据并按键合并值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48197549/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com