- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用 scipy.optimize.curve_fit 将一条线拟合到倒置的高斯分布。它非常适合传统的高斯分布,但不适合符号翻转的高斯分布,而是始终输出一条直线。
我也尝试过限制我的高斯函数,使变量“a”始终为负,但这并不能解决问题。指定 -max(y) 而不是 max(y) 似乎也没有帮助。
import scipy
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from scipy import asarray as ar,exp
def fitdata(x, y):
mean = sum(x * y) / sum(y)
sigma = np.sqrt(sum(y * (x - mean) ** 2) / sum(y))
def guassianfunc(xVar, a, b, c):
return a * exp(-(xVar - b) ** 2 / (2 * c ** 2))
popt, _ = scipy.optimize.curve_fit(guassianfunc, x, y, p0=[max(y), mean, sigma])
return guassianfunc(np.arange(1, 6, 1), *popt)
x = np.array((1,2,3,4,5))
f, ((ax1, ax2)) = plt.subplots(2, sharex='col', sharey='row')
y = np.array((1, 2, 3, 2, 1))
ax1.plot(x, y, color='black')
ax1.plot(x, fitdata(x, y), linewidth=2, label='Fit')
y = np.array((3, 2, 1, 2, 3))
ax2.plot(x, y, color='black')
ax2.plot(x, fitdata(x, y), linewidth=2, label='Fit')
plt.legend()
最佳答案
我认为这是因为您的第二行可能需要偏移量参数?也就是说,您的 guassianfunc
可以制作一个倒置的钟形曲线,前提是它低于 x 轴。例如:
y = np.array((3, 2, 1, 2, 3))-4
ax2.plot(x, y, color='black')
ax2.plot(x, fitdata(x, y), linewidth=2, label='Fit')
尝试像这样添加第 4 个参数
def fitdata(x, y):
mean = sum(x * y) / sum(y)
sigma = np.sqrt(sum(y * (x - mean) ** 2) / sum(y))
def guassianfunc(xVar, a, b, c, d):
return a * exp(-(xVar - b) ** 2 / (2 * c ** 2)) + d
popt, _ = scipy.optimize.curve_fit(guassianfunc, x, y, p0=[max(y), mean, sigma,0])
return guassianfunc(x, *popt)
这也大大减少了您的错误。
关于python - scipy.optimize.curve_fit 无法适应颠倒的高斯,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48324239/
编写求解线性代数方程组的高斯-乔丹方法的任务是我选择用来推进学习 J 的一项练习。系统为 Ax=b,其中 A 是 n-by-n 矩阵,b 和未知的 x 是 n-向量。首先,我从带有控制结构的最简单形式
祝大家新年快乐! :) 我正在 Matlab 中编写 Gauss-Seidel 函数,但遇到了一些问题。 当精度达到 6 位小数时,迭代必须停止。这意味着x-xprevious的无限范数(要求使用它)
我正在尝试使用 scipy 和曲线拟合对我的数据进行高斯拟合,这是我的代码: import csv import numpy as np import matplotlib.pyplot as plt
[已解决,谢谢] 我在 C++ 中开发了下面的代码来使用高斯-塞德尔方法求解线性方程,但我似乎在填充数组时在运行时遇到了一个我无法弄清楚的问题。这是我的代码... #include int main(
我必须设计一种算法作为正向消元法的扩展,在矩阵上进行高斯约旦消元法。我的程序正在执行并创建数字的对角线,但它们并不都是 1。它也不会访问第一行和第一列以将它们更改为 0。最后一列,也就是答案所在的那一
我已经按照 Nixon Aguado 的算法实现了一个高斯滤波器。算法(找到此处描述的模板后 gaussian template )如下。 我相信伪代码是 MATLAB 风格的。 function c
在平滑图像时,我应该应用高斯和双边滤波器等哪种颜色空间版本(灰度、RGB、HSV 等)以获得最佳的去噪效果?是有一个总体趋势,还是在不同情况下会发生变化? 此外,您建议在图像处理中使用什么滤镜和色彩空
我需要根据 Java 中的正态分布对网格(MXN 矩阵)的单元格进行采样。 我知道the Apache Math library具有对一维(1D)值进行采样的函数,因此对于 vector 来说很好,但
我可以使用 random.gauss(mu, sigma) 函数生成高斯数据,但是如何生成二维高斯数据?有这样的功能吗? 最佳答案 如果你可以使用numpy,有numpy.random.multiva
为什么要使用滤波 消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的
我正在执行高斯混合模型分类,并基于此,在 MATLAB 中使用“mvnpdf”函数。 据我所知,该函数返回传递给它的数据点或元素的多变量概率密度。 但是我试图在 C 上重新创建它,并且我假设 mvnp
I am using rbf,Support Vector machine for large training set=1135x9 matrix and test set{95x9}. I am
我现在多次偶然发现使用 scipy.curve_fit 在 python 中进行拟合比使用其他工具(例如根 ( https://root.cern.ch/ ) 例如,在拟合高斯分布时,使用 scipy
我想在 MATLAB 中绘制高斯波函数的二维表示。我希望 2D 图为一种颜色(绿色),远离高斯中心变得透明。 当我使用 imagesc 时(就像在下一个代码中一样),我在黑色方 block 上得到了一
如果我有数据(每日股票图表是一个很好的例子,但它可以是任何东西),其中我只知道 X 单位销售的范围(高 - 低)但我不知道确切的价格出售的任何给定元素。为简单起见,假设价格范围包含足够的桶(例如,40
这个问题在这里已经有了答案: Impulse, gaussian and salt and pepper noise with OpenCV (10 个回答) 关闭6年前。 我想知道 Python 中
我是一名优秀的程序员,十分优秀!