- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
如果我将它切换到 Python 2.x,它执行 10。这是为什么?
训练逻辑回归模型
import keras.backend as K
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
from sklearn.model_selection import train_test_split, cross_val_score
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.3,
random_state = 42)
# NOTE: If I run this in Python 3.x, it only performs 1 Epoch
K.clear_session()
model = Sequential()
model.add(Dense(1, input_shape=(4,), activation='sigmoid'))
model.compile(loss = 'binary_crossentropy',
optimizer= 'sgd',
metrics = ['accuracy'])
# Saved the result of the fitting, to display the history as a data frame & see how the model does
history = model.fit (X_train, y_train)
result = model.evaluate(X_test, y_test)
输出:
Epoch 1/10
960/960 [==============================] - 0s - loss: 0.7943 - acc: 0.5219
Epoch 2/10
960/960 [==============================] - 0s - loss: 0.7338 - acc: 0.5469
Epoch 3/10
960/960 [==============================] - 0s - loss: 0.6847 - acc: 0.5688
Epoch 4/10
960/960 [==============================] - 0s - loss: 0.6446 - acc: 0.6177
Epoch 5/10
960/960 [==============================] - 0s - loss: 0.6113 - acc: 0.6719
Epoch 6/10
960/960 [==============================] - 0s - loss: 0.5832 - acc: 0.7000
Epoch 7/10
960/960 [==============================] - 0s - loss: 0.5591 - acc: 0.7177
Epoch 8/10
960/960 [==============================] - 0s - loss: 0.5381 - acc: 0.7365
Epoch 9/10
960/960 [==============================] - 0s - loss: 0.5196 - acc: 0.7542
Epoch 10/10
960/960 [==============================] - 0s - loss: 0.5031 - acc: 0.7688
32/412 [=>............................] - ETA: 0s
最佳答案
fit函数具有参数 epochs
,默认值为 1
。
fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None,
validation_split=0.0, validation_data=None, shuffle=True, class_weight=None,
sample_weight=None, initial_epoch=0, steps_per_epoch=None,
validation_steps=None)
但是,默认值过去是 10
。查看 this commit 中 models.py
中 fit
的更改例如。您很可能使用旧版本的 Keras 和 Python 2。
关于python - Keras 2.0.8 仅使用 Python 3.x 执行 1 个 epoch,使用 2.x 执行 10 个,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48452999/
这个问题已经有答案了: Find closest date in array with JavaScript (6 个回答) 已关闭 4 年前。 我有一个基本纪元时间值和一个纪元时间数组以及相应纪元时
这个单线用于保存keras深度学习神经网络模型。 model.save('my_model.h5') model.save()保存的是最后一个epoch的模型还是最好的epoch的模型?有时,最后一个
我在 keras 中有以下神经网络(可能没有必要对其进行审查来回答我的问题: 简短摘要:它是一个以图像作为输入并输出图像的神经网络。神经网络主要是卷积网络。我使用发电机。另外,我有两个回调:一个用于
我使用卷积神经网络 (CNN) 来训练数据集。这里我得到 epoch、val_loss、val_acc、总损失、训练时间等作为历史记录。如果我想计算准确率的平均值,那么如何访问 val_acc,以及如
我可能有一个“臃肿的图表”,请参阅( Why does tf.assign() slow the execution time? ),因为每个纪元都花费越来越多的时间,但我在代码中看不到它。你能帮助我
我正在尝试从网站 http://epochjs.github.io/epoch/real-time 运行一个基本示例我收到以下错误 jQuery.Deferred exception: $(...).
我正在尝试使用 SimpleDateFormat 进行简单的纪元到日期的转换。每当我运行该程序时,我都会在转换后收到无效日期。我已经在转换器中运行了纪元戳 [并且我还在外部服务器中存储了日期],所以我
我知道我不久前发布了这个,但我想出了解决方案。我为名为 Roblox 的游戏编写了此代码,但我只是在此处发布代码,以防其他遇到相同问题的人需要解决方案。无论如何,这是代码: outputTime =
为了在 JSON 中传递时间到/从 Web API,为什么我会选择使用 ISO8601 字符串而不是简单的 UTC 纪元值?例如,这两者是相同的: Epoch = 1511324473 iso8601
每次验证循环结束时,我都想保存一个检查点。我设置了val_check_interval成为 0.2所以我在每个时期有 5 个验证循环,但检查点回调仅在时期结束时保存模型。我找不到在每个验证循环后保存模
在 manual在 Tensorflow 中的 Dataset 类上,它展示了如何对数据进行混洗以及如何对其进行批处理。然而,如何对每个时期的数据进行洗牌并不明显。我已经尝试了下面的方法,但是数据在第
我正在尝试基于本文实现一个判别性损失函数,例如图像分割:https://arxiv.org/pdf/1708.02551.pdf (此链接仅供读者引用;我不希望有人阅读它来帮助我!) 我的问题:一旦我
我有一个基于 JSON 的源,我想使用 ADF 映射数据流进行转换。我有一个包含纪元时间戳值的字符串,我想将其转换为日期时间值,以便稍后将其放入 Parquet 文件中。 你知道方法吗?这种语言的文档
我有一个基于 JSON 的源,我想使用 ADF 映射数据流进行转换。我有一个包含纪元时间戳值的字符串,我想将其转换为日期时间值,以便稍后将其放入 Parquet 文件中。 你知道方法吗?这种语言的文档
我有一个以下格式的字符串:“2019-08-17T09:51:41.775+00:00”。我需要将其转换为纪元微秒,但我的转换总是相差一个小时。 这是我目前的代码: String timestamp
在 Python 中的 Tensorflow 2.0 中训练神经网络时,我注意到训练精度和损失在不同时期之间发生了巨大变化。我知道打印的指标是整个 epoch 的平均值,但在每个 epoch 之后准确
假设我有一个定义的神经网络的训练样本(带有相应的训练标签)(神经网络的架构对于回答这个问题无关紧要)。让我们称神经网络为“模型”。 为了不产生任何误解,假设我介绍了“模型”的初始权重和偏差。 实验 1
我正在尝试将以下列转换为纪元,为机器学习做准备,我的 csv 的其余部分包含字符串,所以我假设这是最好的方法,我尝试创建一个 numpy 数组并使用 datetime 对其进行转换,等等但这不起作用我
我正在编写一个 Node API 并得到一个模型,我必须为其生成一个15 位随机数。这必须是唯一的,并且不应看起来微不足道(我无法获得自动增量)。 我真的不想生成数字并查询 Mongo 数据库以进行存
features = [tf.contrib.layers.real_valued_column("x", dimension=1)] estimator = tf.contrib.learn.Lin
我是一名优秀的程序员,十分优秀!