gpt4 book ai didi

python - 在 RFECV scikit-learn 中获取特性

转载 作者:太空宇宙 更新时间:2023-11-04 02:26:04 25 4
gpt4 key购买 nike

受此启发:http://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html#sphx-glr-auto-examples-feature-selection-plot-rfe-with-cross-validation-py

我想知道是否有办法获得特定分数的特征:

enter image description here

在那种情况下,我想知道,当#Features = 10 时,选择的哪 10 个特征给出了那个峰值。

有什么想法吗?

编辑:

这是用于获取该图的代码:

from sklearn.feature_selection import RFECV
from sklearn.model_selection import KFold,StratifiedKFold #for K-fold cross validation
from sklearn.ensemble import RandomForestClassifier #Random Forest

# The "accuracy" scoring is proportional to the number of correct classifications
#kfold = StratifiedKFold(n_splits=10, random_state=1) # k=10, split the data into 10 equal parts
model_Linear_SVM=svm.SVC(kernel='linear', probability=True)
rfecv = RFECV(estimator=model_Linear_SVM, step=1, cv=kfold,scoring='accuracy') #5-fold cross-validation
rfecv = rfecv.fit(X, y)

print('Optimal number of features :', rfecv.n_features_)
print('Best features :', X.columns[rfecv.support_])
print('Original features :', X.columns)
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score \n of number of selected features")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()

最佳答案

首先,您可以看到它选择了哪些特征,其中交叉验证分数最大(在您的情况下,这对应于特征数 17 或 21,我从图中不确定)

rfecv.support_

rfecv.ranking_ 

然后您可以计算所选特征的重要性(对于 cv 分数曲线的峰值)

np.absolute(rfecv.estimator_.coef_)

对于简单的估计器或

rfecv.estimator_.feature_importances_ 

如果您的估算器是某种集成,例如随机森林。

然后可以在循环中将最不重要的特征一个一个去掉,对剩余的特征集重新计算rfecv。

关于python - 在 RFECV scikit-learn 中获取特性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50387089/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com