我正在尝试提高使用 cython 计算 Jonswap 频谱的性能。但它似乎比原始代码慢得多。我该如何改进?
赛通代码:
from libc.math cimport exp
from libc.stdlib cimport malloc
import numpy as np
cimport numpy as np
DTYPE_float = np.float64
ctypedef np.float64_t DTYPE_float_t
def jonswap(np.ndarray[DTYPE_float_t, ndim=1, mode ='c'] w, double Hs, double Tp, double gamma = 3.7):
'''
get Jonswap spectra
:param w: np.ndarray Angular Frequency
'''
cdef:
int n = w.shape[0]
double *sigma = <double*>malloc(n * sizeof(double))
double *a = <double*>malloc(n * sizeof(double))
int i
cdef double wp
cdef np.ndarray[DTYPE_float_t, ndim=1, mode='c'] sj = np.ones(n, dtype=DTYPE_float)
wp = 2 * np.pi / Tp
for i in range(n):
sigma[i] = 0.07 if w[i] < wp else 0.09
a[i] = exp(-0.5 * pow((w[i] - wp) / (sigma[i] * w[i]), 2.0))
sj[i] = 320 * pow(Hs, 2) * pow(w[i], -5.0) / pow(Tp, 4) * exp(-1950 * pow(w[i], -4) / pow(Tp, 4)) * pow(gamma, a[i])
return sj
原代码:
def jonswap(w: np.ndarray, Hs: float, Tp: float, gamma: float = 3.7) -> np.ndarray:
'''
get Jonswap spectra
:param w: np.ndarray Angular Frequency
'''
omega = w
wp = 2 * np.pi / Tp
sigma = np.where(omega < wp, 0.07, 0.09)
a = np.exp(-0.5 * np.power((omega - wp) / (sigma * omega), 2.0))
sj = 320 * np.power(Hs, 2) * np.power(omega, -5.0) / np.power(Tp, 4) * \
np.exp(-1950 * np.power(omega, -4) / np.power(Tp, 4)) * np.power(gamma, a)
return sj
您的原始代码都是向量化的 numpy 操作,因此改进的空间有限。使用注释标志 (-a
) 运行 cython 指出以下可能的改进。
- 使用 libc
pow
而不是 python 内置
- 省略边界检查/环绕语义
- 使用 c 除法关闭除以 0 检查(如果这样做是安全的!)
新的cython版本
from libc.math cimport exp, pow
from libc.stdlib cimport malloc
import numpy as np
cimport numpy as np
cimport cython
DTYPE_float = np.float64
ctypedef np.float64_t DTYPE_float_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def cy_jonswap(np.ndarray[DTYPE_float_t, ndim=1, mode ='c'] w, double Hs, double Tp, double gamma = 3.7):
'''
get Jonswap spectra
:param w: np.ndarray Angular Frequency
'''
cdef:
int n = w.shape[0]
double *sigma = <double*>malloc(n * sizeof(double))
double *a = <double*>malloc(n * sizeof(double))
int i
cdef double wp
cdef np.ndarray[DTYPE_float_t, ndim=1, mode='c'] sj = np.ones(n, dtype=DTYPE_float)
wp = 2 * np.pi / Tp
with nogil:
for i in range(n):
sigma[i] = 0.07 if w[i] < wp else 0.09
a[i] = exp(-0.5 * pow((w[i] - wp) / (sigma[i] * w[i]), 2.0))
sj[i] = 320 * pow(Hs, 2) * pow(w[i], -5.0) / pow(Tp, 4) * exp(-1950 * pow(w[i], -4) / pow(Tp, 4)) * pow(gamma, a[i])
return sj
时间
w = np.random.randn(1_000_000)
%timeit cy_jonswap(w, .5, .5)
289 ms ± 7.34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit jonswap(w, .5, .5)
411 ms ± 26.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
此外,请注意,在您的 cython 版本中,您正在泄漏 sigma
和 a
的内存
我是一名优秀的程序员,十分优秀!