gpt4 book ai didi

python - Matplotlib NavigationToolbar : Advanced figure options?

转载 作者:太空宇宙 更新时间:2023-11-04 02:13:50 25 4
gpt4 key购买 nike

我在 GUI 应用程序中使用 matplotlib 和 PyQt5。为了绘制我的数据,我使用“FigureCanvasQTAgg”并添加“NavigationToolbar2QT”以便能够修改和保存我的绘图。它有效,但我想知道是否有更多先进的工具栏,例如允许更改标题和/或标签的字体大小?这是我使用的 atm:

import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar

self.figure = plt.figure()
self.ax = self.figure.add_subplot(111)
self.canvas = FigureCanvas(self.figure)
self.toolbar = NavigationToolbar(self.canvas)

可用的“图形选项”如下所示:

Available figure options

我正在寻找的选项是:

  • 标题的字体大小
  • 轴标签的字体大小
  • 图例选项,如位置、字体大小、样式

可能我不是第一个寻找这些选项的人,所以我想有人已经编写了这样一个高级工具栏的代码,但我找不到任何东西,并且认为在我尝试自己编写代码之前值得在这里询问并且(可能)浪费了很多时间。

最佳答案

图形选项qt对话框定义在 https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/backends/qt_editor/figureoptions.py

您可以将该代码复制到一个新文件中,比如 myfigureoptions.py 并进行您想要的更改。然后猴子将其修补成原来的样子。

下面将添加一个标题字体大小字段。

# Copyright © 2009 Pierre Raybaut
# Licensed under the terms of the MIT License
# see the mpl licenses directory for a copy of the license
# Modified to add a title fontsize

"""Module that provides a GUI-based editor for matplotlib's figure options."""

import os.path
import re

import matplotlib
from matplotlib import cm, colors as mcolors, markers, image as mimage
import matplotlib.backends.qt_editor.formlayout as formlayout
from matplotlib.backends.qt_compat import QtGui



def get_icon(name):
basedir = os.path.join(matplotlib.rcParams['datapath'], 'images')
return QtGui.QIcon(os.path.join(basedir, name))


LINESTYLES = {'-': 'Solid',
'--': 'Dashed',
'-.': 'DashDot',
':': 'Dotted',
'None': 'None',
}

DRAWSTYLES = {
'default': 'Default',
'steps-pre': 'Steps (Pre)', 'steps': 'Steps (Pre)',
'steps-mid': 'Steps (Mid)',
'steps-post': 'Steps (Post)'}

MARKERS = markers.MarkerStyle.markers


def figure_edit(axes, parent=None):
"""Edit matplotlib figure options"""
sep = (None, None) # separator

# Get / General
# Cast to builtin floats as they have nicer reprs.
xmin, xmax = map(float, axes.get_xlim())
ymin, ymax = map(float, axes.get_ylim())
general = [('Title', axes.get_title()),
('Title Fontsize', axes.title.get_fontsize()), # <------------- HERE
sep,
(None, "<b>X-Axis</b>"),
('Left', xmin), ('Right', xmax),
('Label', axes.get_xlabel()),
('Scale', [axes.get_xscale(), 'linear', 'log', 'logit']),
sep,
(None, "<b>Y-Axis</b>"),
('Bottom', ymin), ('Top', ymax),
('Label', axes.get_ylabel()),
('Scale', [axes.get_yscale(), 'linear', 'log', 'logit']),
sep,
('(Re-)Generate automatic legend', False),
]

# Save the unit data
xconverter = axes.xaxis.converter
yconverter = axes.yaxis.converter
xunits = axes.xaxis.get_units()
yunits = axes.yaxis.get_units()

# Sorting for default labels (_lineXXX, _imageXXX).
def cmp_key(label):
match = re.match(r"(_line|_image)(\d+)", label)
if match:
return match.group(1), int(match.group(2))
else:
return label, 0

# Get / Curves
linedict = {}
for line in axes.get_lines():
label = line.get_label()
if label == '_nolegend_':
continue
linedict[label] = line
curves = []

def prepare_data(d, init):
"""Prepare entry for FormLayout.

`d` is a mapping of shorthands to style names (a single style may
have multiple shorthands, in particular the shorthands `None`,
`"None"`, `"none"` and `""` are synonyms); `init` is one shorthand
of the initial style.

This function returns an list suitable for initializing a
FormLayout combobox, namely `[initial_name, (shorthand,
style_name), (shorthand, style_name), ...]`.
"""
if init not in d:
d = {**d, init: str(init)}
# Drop duplicate shorthands from dict (by overwriting them during
# the dict comprehension).
name2short = {name: short for short, name in d.items()}
# Convert back to {shorthand: name}.
short2name = {short: name for name, short in name2short.items()}
# Find the kept shorthand for the style specified by init.
canonical_init = name2short[d[init]]
# Sort by representation and prepend the initial value.
return ([canonical_init] +
sorted(short2name.items(),
key=lambda short_and_name: short_and_name[1]))

curvelabels = sorted(linedict, key=cmp_key)
for label in curvelabels:
line = linedict[label]
color = mcolors.to_hex(
mcolors.to_rgba(line.get_color(), line.get_alpha()),
keep_alpha=True)
ec = mcolors.to_hex(
mcolors.to_rgba(line.get_markeredgecolor(), line.get_alpha()),
keep_alpha=True)
fc = mcolors.to_hex(
mcolors.to_rgba(line.get_markerfacecolor(), line.get_alpha()),
keep_alpha=True)
curvedata = [
('Label', label),
sep,
(None, '<b>Line</b>'),
('Line style', prepare_data(LINESTYLES, line.get_linestyle())),
('Draw style', prepare_data(DRAWSTYLES, line.get_drawstyle())),
('Width', line.get_linewidth()),
('Color (RGBA)', color),
sep,
(None, '<b>Marker</b>'),
('Style', prepare_data(MARKERS, line.get_marker())),
('Size', line.get_markersize()),
('Face color (RGBA)', fc),
('Edge color (RGBA)', ec)]
curves.append([curvedata, label, ""])
# Is there a curve displayed?
has_curve = bool(curves)

# Get / Images
imagedict = {}
for image in axes.get_images():
label = image.get_label()
if label == '_nolegend_':
continue
imagedict[label] = image
imagelabels = sorted(imagedict, key=cmp_key)
images = []
cmaps = [(cmap, name) for name, cmap in sorted(cm.cmap_d.items())]
for label in imagelabels:
image = imagedict[label]
cmap = image.get_cmap()
if cmap not in cm.cmap_d.values():
cmaps = [(cmap, cmap.name)] + cmaps
low, high = image.get_clim()
imagedata = [
('Label', label),
('Colormap', [cmap.name] + cmaps),
('Min. value', low),
('Max. value', high),
('Interpolation',
[image.get_interpolation()]
+ [(name, name) for name in sorted(mimage.interpolations_names)])]
images.append([imagedata, label, ""])
# Is there an image displayed?
has_image = bool(images)

datalist = [(general, "Axes", "")]
if curves:
datalist.append((curves, "Curves", ""))
if images:
datalist.append((images, "Images", ""))

def apply_callback(data):
"""This function will be called to apply changes"""
orig_xlim = axes.get_xlim()
orig_ylim = axes.get_ylim()

general = data.pop(0)
curves = data.pop(0) if has_curve else []
images = data.pop(0) if has_image else []
if data:
raise ValueError("Unexpected field")
# Set / General
(title, titlefontsize, xmin, xmax, xlabel, xscale, # <------------- HERE
ymin, ymax, ylabel, yscale, generate_legend) = general

if axes.get_xscale() != xscale:
axes.set_xscale(xscale)
if axes.get_yscale() != yscale:
axes.set_yscale(yscale)

axes.set_title(title)
axes.title.set_fontsize(titlefontsize) # <------------- HERE
axes.set_xlim(xmin, xmax)
axes.set_xlabel(xlabel)
axes.set_ylim(ymin, ymax)
axes.set_ylabel(ylabel)

# Restore the unit data
axes.xaxis.converter = xconverter
axes.yaxis.converter = yconverter
axes.xaxis.set_units(xunits)
axes.yaxis.set_units(yunits)
axes.xaxis._update_axisinfo()
axes.yaxis._update_axisinfo()

# Set / Curves
for index, curve in enumerate(curves):
line = linedict[curvelabels[index]]
(label, linestyle, drawstyle, linewidth, color, marker, markersize,
markerfacecolor, markeredgecolor) = curve
line.set_label(label)
line.set_linestyle(linestyle)
line.set_drawstyle(drawstyle)
line.set_linewidth(linewidth)
rgba = mcolors.to_rgba(color)
line.set_alpha(None)
line.set_color(rgba)
if marker is not 'none':
line.set_marker(marker)
line.set_markersize(markersize)
line.set_markerfacecolor(markerfacecolor)
line.set_markeredgecolor(markeredgecolor)

# Set / Images
for index, image_settings in enumerate(images):
image = imagedict[imagelabels[index]]
label, cmap, low, high, interpolation = image_settings
image.set_label(label)
image.set_cmap(cm.get_cmap(cmap))
image.set_clim(*sorted([low, high]))
image.set_interpolation(interpolation)

# re-generate legend, if checkbox is checked
if generate_legend:
draggable = None
ncol = 1
if axes.legend_ is not None:
old_legend = axes.get_legend()
draggable = old_legend._draggable is not None
ncol = old_legend._ncol
new_legend = axes.legend(ncol=ncol)
if new_legend:
new_legend.set_draggable(draggable)

# Redraw
figure = axes.get_figure()
figure.canvas.draw()
if not (axes.get_xlim() == orig_xlim and axes.get_ylim() == orig_ylim):
figure.canvas.toolbar.push_current()

data = formlayout.fedit(datalist, title="Figure options", parent=parent,
icon=get_icon('qt4_editor_options.svg'),
apply=apply_callback)
if data is not None:
apply_callback(data)

# Monkey-patch original figureoptions
from matplotlib.backends.qt_editor import figureoptions # <------------- HERE
figureoptions.figure_edit = figure_edit

用作

import matplotlib.pyplot as plt
import myfigureoptions

fig, ax = plt.subplots()
ax.plot([1,2])
ax.set_title("My Title")

plt.show()

单击图形选项对话框时,您现在有一个标题字体大小字段。

enter image description here

关于python - Matplotlib NavigationToolbar : Advanced figure options?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53099295/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com