- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试根据之前的结果预测足球比赛的结果。我在 Windows 上运行 Python 3.6 并使用 Featuretools 0.4.1。
假设我有以下表示结果历史记录的数据框。
使用上面的数据框,我想创建以下数据框,它将作为 X 提供给机器学习算法。请注意,尽管过去的比赛 field 不同,但主客场球队的平均进球数需要按球队计算。有没有办法使用 Featuretools 创建这样的数据框? ?
可以找到用于模拟转换的Excel文件here .
最佳答案
这是一个棘手的功能,但在 Featuretools 中很好地使用了自定义原语。
第一步是将匹配的 CSV 加载到 Featuretools 实体集中
es = ft.EntitySet()
matches_df = pd.read_csv("./matches.csv")
es.entity_from_dataframe(entity_id="matches",
index="match_id",
time_index="match_date",
dataframe=matches_df)
然后我们定义一个自定义转换原语,用于计算过去 n 场比赛的平均进球数。它有一个参数来控制过去的比赛次数以及是否为主队或客队计算。有关定义自定义原语的信息在我们的文档中 here和 here .
from featuretools.variable_types import Numeric, Categorical
from featuretools.primitives import make_trans_primitive
def avg_goals_previous_n_games(home_team, away_team, home_goals, away_goals, which_team=None, n=1):
# make dataframe so it's easier to work with
df = pd.DataFrame({
"home_team": home_team,
"away_team": away_team,
"home_goals": home_goals,
"away_goals": away_goals
})
result = []
for i, current_game in df.iterrows():
# get the right team for this game
team = current_game[which_team]
# find all previous games that have been played
prev_games = df.iloc[:i]
# only get games the team participated in
participated = prev_games[(prev_games["home_team"] == team) | (prev_games["away_team"] == team)]
if participated.shape[0] < n:
result.append(None)
continue
# get last n games
last_n = participated.tail(n)
# calculate games per game
goal_as_home = (last_n["home_team"] == team) * last_n["home_goals"]
goal_as_away = (last_n["away_team"] == team) * last_n["away_goals"]
# calculate mean across all home and away games
mean = (goal_as_home + goal_as_away).mean()
result.append(mean)
return result
# custom function so the name of the feature prints out correctly
def make_name(self):
return "%s_goal_last_%d" % (self.kwargs['which_team'], self.kwargs['n'])
AvgGoalPreviousNGames = make_trans_primitive(function=avg_goals_previous_n_games,
input_types=[Categorical, Categorical, Numeric, Numeric],
return_type=Numeric,
cls_attributes={"generate_name": make_name, "uses_full_entity":True})
现在我们可以使用这个原语定义特征。在这种情况下,我们将不得不手动完成。
input_vars = [es["matches"]["home_team"], es["matches"]["away_team"], es["matches"]["home_goals"], es["matches"]["away_goals"]]
home_team_last1 = AvgGoalPreviousNGames(*input_vars, which_team="home_team", n=1)
home_team_last3 = AvgGoalPreviousNGames(*input_vars, which_team="home_team", n=3)
home_team_last5 = AvgGoalPreviousNGames(*input_vars, which_team="home_team", n=5)
away_team_last1 = AvgGoalPreviousNGames(*input_vars, which_team="away_team", n=1)
away_team_last3 = AvgGoalPreviousNGames(*input_vars, which_team="away_team", n=3)
away_team_last5 = AvgGoalPreviousNGames(*input_vars, which_team="away_team", n=5)
features = [home_team_last1, home_team_last3, home_team_last5,
away_team_last1, away_team_last3, away_team_last5]
最后,我们可以计算特征矩阵
fm = ft.calculate_feature_matrix(entityset=es, features=features)
返回
home_team_goal_last_1 home_team_goal_last_3 home_team_goal_last_5 away_team_goal_last_1 away_team_goal_last_3 away_team_goal_last_5
match_id
1 NaN NaN NaN NaN NaN NaN
2 2.0 NaN NaN 0.0 NaN NaN
3 1.0 NaN NaN 0.0 NaN NaN
4 3.0 1.000000 NaN 0.0 1.000000 NaN
5 1.0 1.333333 NaN 1.0 0.666667 NaN
6 2.0 2.000000 1.2 0.0 0.333333 0.8
7 1.0 0.666667 0.6 2.0 1.666667 1.6
8 2.0 1.000000 0.8 2.0 2.000000 2.0
9 0.0 1.000000 0.8 1.0 1.666667 1.6
10 3.0 2.000000 2.0 1.0 1.000000 0.8
11 3.0 2.333333 2.2 1.0 0.666667 1.0
12 2.0 2.666667 2.2 2.0 1.333333 1.2
最后,我们还可以使用这些手动定义的特征作为使用深度特征合成的自动化特征工程的输入,这在 here 中有解释。 .通过将手动定义的特征作为 seed_features
传递,ft.dfs
将自动堆叠在它们之上。
fm, feature_defs = ft.dfs(entityset=es,
target_entity="matches",
seed_features=features,
agg_primitives=[],
trans_primitives=["day", "month", "year", "weekday", "percentile"])
feature_defs
是
[<Feature: home_team>,
<Feature: away_team>,
<Feature: home_goals>,
<Feature: away_goals>,
<Feature: label>,
<Feature: home_team_goal_last_1>,
<Feature: home_team_goal_last_3>,
<Feature: home_team_goal_last_5>,
<Feature: away_team_goal_last_1>,
<Feature: away_team_goal_last_3>,
<Feature: away_team_goal_last_5>,
<Feature: DAY(match_date)>,
<Feature: MONTH(match_date)>,
<Feature: YEAR(match_date)>,
<Feature: WEEKDAY(match_date)>,
<Feature: PERCENTILE(home_goals)>,
<Feature: PERCENTILE(away_goals)>,
<Feature: PERCENTILE(home_team_goal_last_1)>,
<Feature: PERCENTILE(home_team_goal_last_3)>,
<Feature: PERCENTILE(home_team_goal_last_5)>,
<Feature: PERCENTILE(away_team_goal_last_1)>,
<Feature: PERCENTILE(away_team_goal_last_3)>,
<Feature: PERCENTILE(away_team_goal_last_5)>]
特征矩阵为
home_team away_team home_goals away_goals label home_team_goal_last_1 home_team_goal_last_3 home_team_goal_last_5 away_team_goal_last_1 away_team_goal_last_3 away_team_goal_last_5 DAY(match_date) MONTH(match_date) YEAR(match_date) WEEKDAY(match_date) PERCENTILE(home_goals) PERCENTILE(away_goals) PERCENTILE(home_team_goal_last_1) PERCENTILE(home_team_goal_last_3) PERCENTILE(home_team_goal_last_5) PERCENTILE(away_team_goal_last_1) PERCENTILE(away_team_goal_last_3) PERCENTILE(away_team_goal_last_5)
match_id
1 Arsenal Chelsea 2 0 1 NaN NaN NaN NaN NaN NaN 1 1 2014 2 0.666667 0.166667 NaN NaN NaN NaN NaN NaN
2 Arsenal Chelsea 1 0 1 2.0 NaN NaN 0.0 NaN NaN 2 1 2014 3 0.333333 0.166667 0.590909 NaN NaN 0.227273 NaN NaN
3 Arsenal Chelsea 0 3 2 1.0 NaN NaN 0.0 NaN NaN 3 1 2014 4 0.125000 0.958333 0.272727 NaN NaN 0.227273 NaN NaN
4 Chelsea Arsenal 1 1 X 3.0 1.000000 NaN 0.0 1.000000 NaN 4 1 2014 5 0.333333 0.500000 0.909091 0.333333 NaN 0.227273 0.500000 NaN
5 Chelsea Arsenal 2 0 1 1.0 1.333333 NaN 1.0 0.666667 NaN 5 1 2014 6 0.666667 0.166667 0.272727 0.555556 NaN 0.590909 0.277778 NaN
6 Chelsea Arsenal 2 1 1 2.0 2.000000 1.2 0.0 0.333333 0.8 6 1 2014 0 0.666667 0.500000 0.590909 0.722222 0.571429 0.227273 0.111111 0.214286
7 Arsenal Chelsea 2 2 X 1.0 0.666667 0.6 2.0 1.666667 1.6 7 1 2014 1 0.666667 0.791667 0.272727 0.111111 0.142857 0.909091 0.833333 0.785714
8 Arsenal Chelsea 0 1 2 2.0 1.000000 0.8 2.0 2.000000 2.0 8 1 2014 2 0.125000 0.500000 0.590909 0.333333 0.357143 0.909091 1.000000 1.000000
9 Arsenal Chelsea 1 3 2 0.0 1.000000 0.8 1.0 1.666667 1.6 9 1 2014 3 0.333333 0.958333 0.090909 0.333333 0.357143 0.590909 0.833333 0.785714
10 Chelsea Arsenal 3 1 1 3.0 2.000000 2.0 1.0 1.000000 0.8 10 1 2014 4 0.916667 0.500000 0.909091 0.722222 0.714286 0.590909 0.500000 0.214286
11 Chelsea Arsenal 2 2 X 3.0 2.333333 2.2 1.0 0.666667 1.0 11 1 2014 5 0.666667 0.791667 0.909091 0.888889 0.928571 0.590909 0.277778 0.428571
12 Chelsea Arsenal 4 1 1 2.0 2.666667 2.2 2.0 1.333333 1.2 12 1 2014 6 1.000000 0.500000 0.590909 1.000000 0.928571 0.909091 0.666667 0.571429
关于python - 如何使用 Featuretools 按列值从单个数据框中的多列创建特征?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53579465/
前言: 有时候,一个数据库有多个帐号,包括数据库管理员,开发人员,运维支撑人员等,可能有很多帐号都有比较大的权限,例如DDL操作权限(创建,修改,删除存储过程,创建,修改,删除表等),账户多了,管理
所以我用 Create React App 创建并设置了一个大型 React 应用程序。最近我们开始使用 Storybook 来处理和创建组件。它很棒。但是,当我们尝试运行或构建应用程序时,我们不断遇
遵循我正在创建的控件的代码片段。这个控件用在不同的地方,变量也不同。 我正在尝试编写指令来清理代码,但在 {{}} 附近插入值时出现解析错误。 刚接触 Angular ,无法确定我错过了什么。请帮忙。
我正在尝试创建一个 image/jpeg jax-rs 提供程序类,它为我的基于 post rest 的 Web 服务创建一个图像。我无法制定请求来测试以下内容,最简单的测试方法是什么? @POST
我一直在 Windows 10 的模拟器中练习 c。后来我改用dev C++ IDE。当我在 C 中使用 FILE 时。创建的文件的名称为 test.txt ,而我给出了其他名称。请帮助解决它。 下面
当我们创建自定义 View 时,我们将 View 文件的所有者设置为自定义类,并使用 initWithFrame 或 initWithCode 对其进行实例化。 当我们创建 customUITable
我正在尝试为函数 * Producer 创建一个线程,但用于创建线程的行显示错误。我为这句话加了星标,但我无法弄清楚它出了什么问题...... #include #include #include
今天在做项目时,遇到了需要创建JavaScript对象的情况。所以Bing了一篇老外写的关于3种创建JavaScript对象的文章,看后跟着打了一遍代码。感觉方法挺好的,在这里与大家分享一下。 &
我正在阅读将查询字符串传递给 Amazon 的 S3 以进行身份验证的文档,但似乎无法理解 StringToSign 的创建和使用方式。我正在寻找一个具体示例来说明 (1) 如何构造 String
前言:我对 C# 中任务的底层实现不太了解,只了解它们的用法。为我在下面屠宰的任何东西道歉: 对于“我怎样才能开始一项任务但不等待它?”这个问题,我找不到一个好的答案。在 C# 中。更具体地说,即使任
我有一个由一些复杂的表达式生成的 ILookup。假设这是按姓氏查找人。 (在我们简单的世界模型中,姓氏在家庭中是唯一的) ILookup families; 现在我有两个对如何构建感兴趣的查询。 首
我试图创建一个 MSI,其中包含 和 exe。在 WIX 中使用了捆绑选项。这样做时出错。有人可以帮我解决这个问题。下面是代码: 错误 error LGH
在 Yii 中,Create 和 Update 通常使用相同的形式。因此,如果我在创建期间有电子邮件、密码、...other_fields...等字段,但我不想在更新期间专门显示电子邮件和密码字段,但
上周我一直在努力创建一个给定一行和一列的 QModelIndex。 或者,我会满足于在已经存在的 QModelIndex 中更改 row() 的值。 任何帮助,将不胜感激。 编辑: QModelInd
出于某种原因,这不起作用: const char * str_reset_command = "\r\nReset"; const char * str_config_command = "\r\nC
现在,我有以下由 original.df %.% group_by(Category) %.% tally() %.% arrange(desc(n)) 创建的 data.frame。 DF 5),
在今天之前,我使用/etc/vim/vimrc来配置我的vim设置。今天,我想到了创建.vimrc文件。所以,我用 touch .vimrc cat /etc/vim/vimrc > .vimrc 所
我可以创建一个 MKAnnotation,还是只读的?我有坐标,但我发现使用 setCooperative 手动创建 MKAnnotation 并不容易。 想法? 最佳答案 MKAnnotation
在以下代码中,第一个日志语句按预期显示小数,但第二个日志语句记录 NULL。我做错了什么? NSDictionary *entry = [[NSDictionary alloc] initWithOb
我正在使用与此类似的代码动态添加到数组; $arrayF[$f+1][$y][$x+1] = $value+1; 但是我在错误报告中收到了这个: undefined offset :1 问题:尝试创
我是一名优秀的程序员,十分优秀!