- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我使用 TBB 实现了 Jacobi 算法,它工作得很好。然后我使用缩减并行化收敛计算,但出于某种原因,如果我使用超过 1 个逻辑核心,我会遇到段错误,我无法弄清楚原因。
我可以在只有 1 个逻辑核心的系统上使用 1 个以上的线程。
使用 OpenMP 的相同实现可以毫不费力地工作
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range.h>
#include <tbb/task_scheduler_init.h>
#include <tbb/tick_count.h>
// ----------------------------------------------------------------
#define SIZE 1024
#define RESIDUO 0.0009f*SIZE
#define THREADS 2
using namespace tbb;
// ----------------------------------------------------------------
struct Sum {
float ret;
float (*a)[SIZE];
float (*x);
float (*b);
Sum(float A[SIZE][SIZE], float X[SIZE], float B[SIZE]) : ret(0), a(A), x(X), b(B) {}
Sum( Sum&, split ) {ret = 0;}
void operator()( const blocked_range<int>& r ) {
float temp = ret;
for( int i = r.begin(); i != r.end(); i++ ) {
float sum = 0.0f;
for(int j = 0; j < SIZE; j++){
sum += a[i][j] * x[j];
}
temp += pow(b[i] - sum, 2);
}
ret = temp;
}
void join( Sum& rhs ) {ret += rhs.ret;}
};
/*
// || b - Ax ||
*/
int converge(float a[SIZE][SIZE], float x[SIZE], float b[SIZE]){
Sum total(a, x, b);
parallel_reduce( blocked_range<int>(0, SIZE), total );
float norm = sqrt(total.ret);
printf("Ret: %f | Residuo: %f\n", total.ret, norm);
return (norm <= RESIDUO);
}
// ----------------------------------------------------------------
float randomFloat()
{
float r = (float)rand()/(float)RAND_MAX;
return r;
}
// ----------------------------------------------------------------
int check_ddm(float (*a)[SIZE]){
float sum = 0.0f;
int i = 0, j = 0;
for(i = 0; i < SIZE; i++){
sum = 0.0f;
for(j = 0; j < SIZE; j++){
if(i != j){
sum += a[i][j];
}
}
if(a[i][i] < sum){
printf("line: %d, sum: %f, a[i][i]: %f \n", i, sum, a[i][i]);
for(j = 0; j < SIZE; j++){
if(i != j) printf("%f ", a[i][j]);
else printf("(%f) ", a[i][j]);
}
printf("\n");
return 0;
}
}
return 1;
}
// ----------------------------------------------------------------
int generate_ddm(float (*a)[SIZE], float *b)
{
int i = 0, j = 0;
float line = 0.0f;
for(i = 0; i < SIZE; i++){
line = 0.0f;
for(j = 0; j < SIZE; j++){
if(i != j){
a[i][j] = randomFloat();
}
line += a[i][j];
}
a[i][i] = SIZE;
b[i] = line + SIZE;
}
return check_ddm(a);
}
// ----------------------------------------------------------------
int main( )
{
float (*x)[SIZE] = (float(*)[SIZE])malloc(sizeof *x * 2);
float (*a)[SIZE] = (float(*)[SIZE])malloc(sizeof *a * SIZE);
float (*b) = (float*)malloc(sizeof(float) * SIZE);
int i = 0, j = 0;
float delta = 0.0f;
int read = 0;
int write = 1;
srand(time(NULL));
tbb::task_scheduler_init init(THREADS);
// set up initial solution
for(i = 0; i < SIZE; i++){
x[0][i] = i;
x[1][i] = i;
}
// generate a diagonal dominant matrix
if(!generate_ddm(a, b)){
printf("Array generated is not ddm!\n");
return 1;
}
tick_count startTime = tick_count::now();
while(!converge(a, x[write], b)){
read = !read;
write = !write;
parallel_for(blocked_range<int>(0,SIZE),
[&] (const blocked_range<int>& r) {
for (int i = r.begin(); i < r.end(); i++) {
float delta = 0.0f;
for(int j = 0; j < SIZE; j++){
if(j != i){
delta += a[i][j] * x[read][j];
}
}
x[write][i] = (b[i] - delta) / a[i][i];
}
});
}
tick_count lastTime = tick_count::now();
float walltime = (lastTime - startTime).seconds();
printf("tbb %f\n", walltime);
converge(a, x[write], b);
printf("x0: %f | x%d: %f\n", x[write][0], SIZE-1, x[write][SIZE-1]);
free(a);
free(b);
free(x);
return 0;
}
段错误发生在 Sum
类中的以下行:
sum += a[i][j] * x[j];
如果我将该行更改为
float tmpa = a[i][j];
float tmpx = x[j];
sum += tmpa * tmpx;
错误一直在
sum += tmpa * tmpx;
最佳答案
在原始版本中,“拆分构造函数”未定义 a、x 和 b。它们需要从传入的 Sum& 参数中复制。例如,将拆分构造函数更改为:
Sum( Sum& s, split ) {a=s.a; b=s.b; x=s.x; ret = 0;}
关于c++ - 当使用超过 1 个逻辑核心时,TBB 减少会导致段错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16874417/
我是 Bison 解析的新手,我无法理解它是如何工作的。我有以下语法,其中我保留了最低限度的语法来突出问题。 %left '~' %left '+' %token T_VARIABLE %% star
我链接了 2 个映射器和 1 个缩减器。是否可以将中间输出(链中每个映射器的 o/p)写入 HDFS?我尝试为每个设置 OutputPath,但它似乎不起作用。现在,我不确定是否可以完成。有什么建议吗
我正在编写一些代码来管理自定义磁盘文件结构并将其同步到未连接的系统。我的要求之一是能够在实际生成同步内容之前估计同步的大小。作为一个简单的解决方案,我整理了一个包含完整路径文件名的 map ,作为高效
我来自一个 SQL 世界,其中查找由多个对象属性(published = TRUE 或 user_id = X)完成,并且有 任何地方都没有加入 (因为 1:1 缓存层)。文档数据库似乎很适合我的数据
在 R 中,我有一个整数向量。从这个向量中,我想随机减少每个整数元素的值,以获得向量的总和,即初始总和的百分比。 在这个例子中,我想将向量“x”减少到向量“y”,其中每个元素都被随机减少以获得等于初始
我发现自己遇到过几次我有一个 reducer /组合 fn 的情况,如下所示: def combiner(a: String, b: String): Either[String, String]
Ubuntu 12.04 nginx 1.2.4 avconv版本 avconv version 0.8.10-4:0.8.10-0ubuntu0.12.04.1, Copyright (c) 200
我是 R 编程语言的新手。我有一个包含 2 列(ID 和 Num)的数据集,如下所示: ID Num 3 8 3 12 4 15 4 18 4
我正在使用高阶函数将函数应用于向量中的每个元素并将结果作为标量值返回。 假设我有: v = c(0, 1, 2, 3, 4, 5, 6, 7, 8) 我想计算以左边 5 个整数为中心的所有这些整数的总
关闭。这个问题需要debugging details .它目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and th
这个问题在这里已经有了答案: How to write the dataframes in a list to a single csv file (2 个回答) 5年前关闭。 我正在尝试使用 Red
刚开始学习CUDA编程,对归约有些迷茫。 我知道与共享内存相比,全局内存有很多访问延迟,但我可以使用全局内存来(至少)模拟类似于共享内存的行为吗? 例如,我想对长度恰好为 BLOCK_SIZE * T
我经常使用OptiPNG或pngcrush减小PNG图像的文件大小。 我希望能够从.NET应用程序中以编程方式执行此类操作。我正在动态生成要发送到移动设备的PNG,因此我想减小文件大小。 图像质量很重
减少和减少让您在序列上累积状态。 序列中的每个元素都会修改累积的状态,直到 到达序列的末尾。 在无限列表上调用reduce 或reductions 有什么含义? (def c (cycle [0]))
这与R: use the newly generated data in the previous row有关 我意识到我面临的实际问题比我在上面的线程中给出的示例要复杂一些 - 似乎我必须将 3 个
有什么办法可以减少.ttf字体的大小?即如果我们要删除一些我们不使用的glyps。 最佳答案 使用Google Web Fonts,您可以限制字符集,例如: //fonts.googleapis.co
我需要在iOS中制作一个应用程序,在她的工作过程中发出类似“哔”的声音。 我已经使用MPMusicPlayerController实现了与背景ipod的交互。 问题: 由于来自ipod的音乐音量很大,
我有一个嵌套 map m,如下所示: m = Map("电子邮件"-> "a@b.com", "背景"-> Map("语言"-> "英语")) 我有一个数组arr = Array("backgroun
有什么原因为什么不应该转发map / reduce函数中收到的可写内容? 我的意思是-每个map / reduce函数都有一个可写的键/值,并可能发出一个键/值对。如果我想执行一些过滤,我应该只发出接
假设我有一个数据列表 val data = listOf("F 1", "D 2", "U 1", "D 3", "F 10") 我想执行每个元素的给定逻辑。 我必须在外部添加 var acc2 =
我是一名优秀的程序员,十分优秀!