- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试为 pandas 中的每个分组分配一个名称。
我有一个数据框和一个名称列表:
df = pd.DataFrame({'a':[1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10],
'ids':[234, 345, 456, 444, 333, 22, 11, 5, 1, 2, 3, 4, 6]})
names = ['Matt', 'Jeff', 'Steph', 'Shannon']
我想将这些名称分配给每条记录,循环方式。所以我创建了一个辅助函数来延长这个列表以匹配长度。
def match_length(list_, length):
return length//len(list_)*list_+list_[:length%len(list_)]
df['owner'] = match_length(names, len(df))
a ids owner
1 234 Matt
1 345 Jeff
2 456 Steph
2 444 Shannon
3 333 Matt
4 22 Jeff
5 11 Steph
6 5 Shannon
7 1 Matt
7 2 Jeff
8 3 Steph
9 4 Shannon
10 6 Matt
我遇到的问题是我想确保将同一个人分配给每个 'a'
组。我不希望“马特”和“杰夫”都拥有前两条记录,只有马特应该拥有它们。我已经尝试过 .groupby()
和 .transform()
、.apply()
和 .assign()
没有运气。我不确定如何首先操作我的列表。它应该 返回..
a ids owner
1 234 Matt
1 345 Matt
2 456 Jeff
2 444 Jeff
3 333 Steph
4 22 Shannon
5 11 Matt
6 5 Jeff
7 1 Steph
7 2 Steph
8 3 Shannon
9 4 Matt
10 6 Jeff
最佳答案
这是您需要的吗?
(df.groupby('a').ngroup()%4).map(dict(enumerate(names)))
Out[339]:
0 Matt
1 Matt
2 Jeff
3 Jeff
4 Steph
5 Shannon
6 Matt
7 Jeff
8 Steph
9 Steph
10 Shannon
11 Matt
12 Jeff
dtype: object
关于python - 在组 pandas 中设置值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54770873/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!