- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。
我的问题/疑问:我尝试预测,但一切都预测为“0”。我认为这是错误的。我的错误准确率是 92% 吗?我在网上读到一些关于错误准确性的内容。
请帮忙!
一些背景信息:数据集有 800 行,12 列。我正在预测最后一列(真/假)。我正在使用具有数字和分类的数据属性。我用标签编码了数字类别。这些卡片中有 92% 是假的。 8% 是正确的。
我在 200 张卡片上采样并运行了一个神经网络,并获得了 91% 的准确率……我还重置了所有内容,并在所有 800 张卡片上获得了 92% 的准确率。我过度拟合了吗?
提前感谢您的帮助
dataFrame = dataFrame.fillna(value='NaN')
labelencoder = LabelEncoder()
numpy_dataframe = dataFrame.as_matrix()
numpy_dataframe[:, 0] = labelencoder.fit_transform(numpy_dataframe[:, 0])
numpy_dataframe[:, 1] = labelencoder.fit_transform(numpy_dataframe[:, 1])
numpy_dataframe
X = numpy_dataframe[:,0:10]
Y = numpy_dataframe[:,10]
model = Sequential()
model.add(Dense(12, input_dim=10, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, Y, epochs=150, batch_size=10)
scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
#this shows that we have 91.88% accuracy with the whole dataframe
dataFrame200False = dataFrame
dataFrame200False['Legendary'] = dataFrame200False['Legendary'].astype(str)
dataFrame200False= dataFrame200False[dataFrame200False['Legendary'].str.contains("False")]
dataFrame65True = dataFrame
dataFrame65True['Legendary'] = dataFrame65True['Legendary'].astype(str)
dataFrame65True= dataFrame65True[dataFrame65True['Legendary'].str.contains("True")]
DataFrameFalseSample = dataFrame200False.sample(200)
DataFrameFalseSample
dataFrameSampledTrueFalse = dataFrame65True.append(DataFrameFalseSample, ignore_index=True)
dataFrameSampledTrueFalse
#label encoding the files
labelencoder = LabelEncoder()
numpy_dataSample = dataFrameSampledTrueFalse.as_matrix()
numpy_dataSample[:, 0] = labelencoder.fit_transform(numpy_dataSample[:, 0])
numpy_dataSample[:, 1] = labelencoder.fit_transform(numpy_dataSample[:, 1])
numpy_dataSample
a = numpy_dataframe[:,0:10]
b = numpy_dataframe[:,10]
model = Sequential()
model.add(Dense(12, input_dim=10, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(a, b, epochs=1000, batch_size=10)
scoresSample = model.evaluate(a, b)
print("\n%s: %.2f%%" % (model.metrics_names[1], scoresSample[1]*100))
dataFramePredictSample = dataFrame.sample(500)
labelencoder = LabelEncoder()
numpy_dataframeSamples = dataFramePredictSample.as_matrix()
numpy_dataframeSamples[:, 0] = labelencoder.fit_transform(numpy_dataframeSamples[:, 0])
numpy_dataframeSamples[:, 1] = labelencoder.fit_transform(numpy_dataframeSamples[:, 1])
Xnew = numpy_dataframeSamples[:,0:10]
Ynew = numpy_dataframeSamples[:,10]
# make a prediction
Y = model.predict_classes(Xnew)
# show the inputs and predicted outputs
for i in range(len(Xnew)):
print("X=%s, Predicted=%s" % (Xnew[i], Y[i]))
最佳答案
问题是,正如您所说,您的数据集严重不平衡。这意味着 0 类的训练示例比 1 类多得多。这导致网络在训练期间严重偏向于预测 0 类。
您应该做的第一件事是不使用准确性作为您的评估指标!我的建议是绘制一个混淆矩阵,以便您准确了解模型的预测结果。您还可以查看宏平均(如果您不熟悉该技术,请阅读 this)。
有两种方法可以提高模型的性能:
关于python - 如何改进神经网络预测、分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55317559/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!