- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个函数可以在 float64(x,y) 上的二维矩阵上运行。基本概念:对于每个行组合(编号行选择 2)计算减法后正值的数量(行 1 - 行 2)。在 int64(y,y) 的二维矩阵中,如果值高于特定阈值,则将此值存储在索引 [row1,row2] 中,如果低于特定阈值,则存储在索引 [row2,row1] 中。
我已经实现了它并用 @njit(parallel=False) 对其进行了修饰,效果很好 @njit(parallel=True) 似乎没有加速。为了加快整个过程,我查看了@guvectorize,效果也不错。但是,在这种情况下,我也无法弄清楚如何将 @guvectorize 与 parallel true 一起使用。
我看过numba guvectorize target='parallel' slower than target='cpu' ,解决方案是改用@vecorize,但我无法将解决方案转移到我的问题上,因此我现在正在寻求帮助:)
基本的 jitted 和 guvectorized 实现
import numpy as np
from numba import jit, guvectorize, prange
import timeit
@jit(parallel=False)
def check_pairs_sg(raw_data):
# 2D array to be filled
result = np.full((len(raw_data), len(raw_data)), -1)
# Iterate over all possible gene combinations
for r1 in range(0, len(raw_data)):
for r2 in range(r1+1, len(raw_data)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
@jit(parallel=True)
def check_pairs_multi(raw_data):
# 2D array to be filled
result = np.full((len(raw_data), len(raw_data)), -1)
# Iterate over all possible gene combinations
for r1 in range(0, len(raw_data)):
for r2 in prange(r1+1, len(raw_data)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
@guvectorize(["void(float64[:,:], int64[:,:])"],
"(n,m)->(m,m)", target='cpu')
def check_pairs_guvec_sg(raw_data, result):
for r1 in range(0, len(result)):
for r2 in range(r1+1, len(result)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
@guvectorize(["void(float64[:,:], int64[:,:])"],
"(n,m)->(m,m)", target='parallel')
def check_pairs_guvec_multi(raw_data, result):
for r1 in range(0, len(result)):
for r2 in range(r1+1, len(result)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
if __name__=="__main__":
np.random.seed(404)
a = np.random.random((512,512)).astype(np.float64)
res = np.full((len(a), len(a)), -1)
用
测量%timeit check_pairs_sg(a)
%timeit check_pairs_multi(a)
%timeit check_pairs_guvec_sg(a, res)
%timeit check_pairs_guvec_multi(a, res)
导致:
614 ms ± 2.54 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
507 ms ± 6.87 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
622 ms ± 3.88 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
671 ms ± 4.35 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
我全神贯注于如何将其实现为 @vectorized 或适当的并行 @guvectorize 以真正并行地填充生成的二维数组。
我想这是我尝试将其进一步应用于 gpu 之前的第一步。
非常感谢任何帮助。
最佳答案
例如,想想这些行的或多或少完全等效的实现
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
在 C++ 中。
伪代码
您代码中的主要问题是:
删除临时数组和简化
@nb.njit(parallel=False)
def check_pairs_simp(raw_data):
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in range(0, raw_data.shape[1]):
for r2 in range(r1+1, raw_data.shape[1]):
num_pos=0
for i in range(raw_data.shape[0]):
if (raw_data[i,r1]>raw_data[i,r2]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
移除临时数组和简化 + 连续内存访问
@nb.njit(parallel=False)
def check_pairs_simp_rev(raw_data_in):
#Create a transposed array not just a view
raw_data=np.ascontiguousarray(raw_data_in.T)
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in range(0, raw_data.shape[0]):
for r2 in range(r1+1, raw_data.shape[0]):
num_pos=0
for i in range(raw_data.shape[1]):
if (raw_data[r1,i]>raw_data[r2,i]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
移除临时数组和简化 + 连续内存访问 + 并行化
@nb.njit(parallel=True,fastmath=True)
def check_pairs_simp_rev_p(raw_data_in):
#Create a transposed array not just a view
raw_data=np.ascontiguousarray(raw_data_in.T)
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in nb.prange(0, raw_data.shape[0]):
for r2 in range(r1+1, raw_data.shape[0]):
num_pos=0
for i in range(raw_data.shape[1]):
if (raw_data[r1,i]>raw_data[r2,i]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
时间
%timeit check_pairs_sg(a)
488 ms ± 8.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit check_pairs_simp(a)
186 ms ± 3.83 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit check_pairs_simp_rev(a)
12.1 ms ± 226 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit check_pairs_simp_rev_p(a)
5.43 ms ± 49.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
关于python - Numba - 如何并行填充二维数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55398477/
我正在尝试创建一个包含 int[][] 项的数组 即 int version0Indexes[][4] = { {1,2,3,4}, {5,6,7,8} }; int version1Indexes[
我有一个整数数组: private int array[]; 如果我还有一个名为 add 的方法,那么以下有什么区别: public void add(int value) { array[va
当您尝试在 JavaScript 中将一个数组添加到另一个数组时,它会将其转换为一个字符串。通常,当以另一种语言执行此操作时,列表会合并。 JavaScript [1, 2] + [3, 4] = "
根据我正在阅读的教程,如果您想创建一个包含 5 列和 3 行的表格来表示这样的数据... 45 4 34 99 56 3 23 99 43 2 1 1 0 43 67 ...它说你可以使用下
我通常使用 python 编写脚本/程序,但最近开始使用 JavaScript 进行编程,并且在使用数组时遇到了一些问题。 在 python 中,当我创建一个数组并使用 for x in y 时,我得
我有一个这样的数组: temp = [ 'data1', ['data1_a','data1_b'], ['data2_a','data2_b','data2_c'] ]; // 我想使用 toStr
rent_property (table name) id fullName propertyName 1 A House Name1 2 B
这个问题在这里已经有了答案: 关闭13年前。 Possible Duplicate: In C arrays why is this true? a[5] == 5[a] array[index] 和
使用 Excel 2013。经过多年的寻找和适应,我的第一篇文章。 我正在尝试将当前 App 用户(即“John Smith”)与他的电子邮件地址“jsmith@work.com”进行匹配。 使用两个
当仅在一个边距上操作时,apply 似乎不会重新组装 3D 数组。考虑: arr 1),但对我来说仍然很奇怪,如果一个函数返回一个具有尺寸的对象,那么它们基本上会被忽略。 最佳答案 这是一个不太理
我有一个包含 GPS 坐标的 MySQL 数据库。这是我检索坐标的部分 PHP 代码; $sql = "SELECT lat, lon FROM gps_data"; $stmt=$db->query
我需要找到一种方法来执行这个操作,我有一个形状数组 [批量大小, 150, 1] 代表 batch_size 整数序列,每个序列有 150 个元素长,但在每个序列中都有很多添加的零,以使所有序列具有相
我必须通过 url 中的 json 获取文本。 层次结构如下: 对象>数组>对象>数组>对象。 我想用这段代码获取文本。但是我收到错误 :org.json.JSONException: No valu
enter code here- (void)viewDidLoad { NSMutableArray *imageViewArray= [[NSMutableArray alloc] init];
知道如何对二维字符串数组执行修剪操作,例如使用 Java 流 API 进行 3x3 并将其收集回相同维度的 3x3 数组? 重点是避免使用显式的 for 循环。 当前的解决方案只是简单地执行一个 fo
已关闭。此问题需要 debugging details 。目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and the
我有来自 ASP.NET Web 服务的以下 XML 输出: 1710 1711 1712 1713
如果我有一个对象todo作为您状态的一部分,并且该对象包含数组列表,则列表内部有对象,在这些对象内部还有另一个数组listItems。如何更新数组 listItems 中 id 为“poi098”的对
我想将最大长度为 8 的 bool 数组打包成一个字节,通过网络发送它,然后将其解压回 bool 数组。已经在这里尝试了一些解决方案,但没有用。我正在使用单声道。 我制作了 BitArray,然后尝试
我们的数据库中有这个字段指示一周中的每一天的真/假标志,如下所示:'1111110' 我需要将此值转换为 boolean 数组。 为此,我编写了以下代码: char[] freqs = weekday
我是一名优秀的程序员,十分优秀!